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Abstract

Inverse problems arise in a wide range of subjects, such as medicine , cosmology, and engineer-
ing. These problems are often high dimensional, making them difficult to analyse and solve,
particularly in industrial applications where timeframes are narrow. The aim of this thesis is
to provide broadly applicable methods to reduce the computational costs involved in inverse
problems.

I consider solving inverse problems in two stages. The first is the offline phase. This is the
stage of modelling and analysing the problem. This is sometimes called the “laboratory” or
“research” stage. The second stage is online, where real data is coming in and a corresponding
solution is found. Typically, the offline stage requires and can access greater computational
resources than the online stage. Methods of reducing computational costs at the offline and
online stage are presented in this thesis.

This thesis primarily takes the Bayesian viewpoint of inverse problems. Much of the anal-
ysis in this thesis is of linear inverse problems with Gaussian unknowns. Such problems can
be expressed in terms of linear algebra, so much of this thesis is concerned with numerical lin-
ear algebra. A particular focus is approximate matrix decompositions. This thesis makes use
of the Sherman-Morrison-Woodbury formula/matrix inversion lemma, Schur Complements,
pseudoinverses, the eigenvalue decomposition, the singular value decomposition, the Cholesky
decomposition and particularly the QR decomposition. This thesis presents a methodology of
computing the QR decomposition of sample approximations to matrices, and demonstrates ap-
plications of such factorisations to inverse problems. This thesis also makes use of probabilis-
tic algorithms for constructing approximate matrix decompositions. A probabilistic method of
constructing locally accurate matrix approximations is introduced.

A particular focus of this thesis is the Bayesian approximation error framework, in which
simulations are computed at the offline stage in order to reduce computational cost at the on-
line stage. The Bayesian approximation error, sample QR factorisation, and locally accurate
probabilistic approximations are combined to reduce computational costs.

The methods of this thesis are demonstrated separately, typically on 1D deconvolution.
These methods are then combined and applied to the linear problems of 2D deconvolution
and x-ray tomography. The methods of this thesis are also applied to the nonlinear simplified
conductivity imaging problem.
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List of Notation

d ∈ Rnd Data
nd Dimensionality of data
x Unknown of interest
e Noise
Ae Model i.e. d = Ae(x, e)
A Forward model/forward operator i.e. d = A(x) + e in additive noise model

e ∈ Rnd Finite dimensional noise
x ∈ Rnx Finite dimensional approximation of x
nx Dimensionality of x
Ae Finite dimensional model i.e. d = Ae(x, e)
A Finite dimensional forward model/forward operator i.e. d = A(x) + e in additive noise

model. d = Ax+ e with A ∈ Rn×nx in linear additive noise model
Ω Domain e.g. Ω = [0, 1]× [0, 1]
∂Ω Boundary of domain
t “Spatial” variable i.e. t ∈ Ω
nt Spatial dimension e.g. if Ω = [0, 1]× [0, 1] then nt = 2

tx ∈ Rnx×nt Finite dimensional approximation of spatial variable i.e. x(t(j, :)) = x(j, :)
dt = Ae(xt, et) A particular realisation of the model d = Ae(x, e)

xt Ground truth
B ∈ Rn×m General n×m real valued matrix

B(j, :) ∈ R1×m j’th row of B
B(:, k) ∈ Rn×1 k’th column of B
B(j, k) ∈ R j’th row of k’th column of B
B(j : k, :) Rows j to k of B
b ∈ Rn General length n vector

In ∈ Rn×n Identity matrix

In,m ∈ Rm×m In,m =

(
In 0n,(m−n)

0(m−n),n 0(m−n),(m−n)

)
0n,m ∈ Rn×m Zero matrix
U ∈ Rn×n Unitary matrix i.e. UUT = UTU = In
uj ∈ Rn The j’th column of U i.e. uj = U(:, j)

Λ A diagonal matrix of decreasing eigenvalues i.e Λ(j, j) = λj with λj > λk for j < k
λj j’th eigenvalue
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B = UBΛBU
T
B Eigendecomposition of symmetric B ∈ Rn×n i.e. Buj = λjuj

V ∈ Rm×m Unitary matrix
vj ∈ Rm The j’th column of V
D ∈ Rn×m Diagonal matrix of decreasing singular

values D(j, j) = dj with dj > dr ≥ 0 for j < k
dj j’th singular value
κB The condition number of matrix B, κB = d1

dminn,m

B = UBDBV
T
B Singular value decomposition of matrix B ∈ Rn×m

rB,t True rank of matrix B i.e. drB,t > 0 and drB,t+j = 0 for all j > 0
Ur ∈ Rn×r First r columns of U , Ur = U(:, 1 : r)

Unull ∈ Rn×(n−r) Columns r + 1 to n of U , Unull = U(:, r + 1 : n)
Dr ∈ Rr×r Principle r × r submatrix of D, Dr = D(1 : r, 1 : r) ∈ Rr×r

B = UB,rDB,rV
T
B,r Thin Singular Value Decomposition of rank r matrix B

B† = VB,rtD
−1
B,rt

UTB,rt ∈ Rm×n (Moore-Penrose) Pseudoinverse of B ∈ Rn×m

B†r = VB,rD
−1
B,rU

T
B,r ∈ Rm×n r term pseudoinverse of B ∈ Rn×m

x† (Moore-Penrose) Pseudoinverse estimate of xt
i.e. if dt = Axt + et, x† = A†dt

x†r r term pseudoinverse/tSVD estimate of xt
i.e. if dt = Axt + et, x† = A†rdt

‖b‖p lp norm of vector b ∈ Rn

e.g. ‖b‖2 =
(
b(1)2 + b(2)2 + · · ·+ b(n)2

) 1
2

‖B‖p induced lp norm of matrix B i.e. ‖B‖p = max‖b‖p=1 ‖Bb‖p
xls A solution of the least squares problem xls = minx {‖Ax− y‖2}
Xls The set of all xls

B† ∈ Rm×n The pseudoinverse of B ∈ Rn×m, B† = VB,rD
−1
B,rU

T
B,r

Ωx Domain containing unknown of interest x
z Auxiliary unknown, typically parameter values in region around Ωx

Ωz Domain of auxiliary unknown i.e Ω = Ωx ∪ Ωz

s Unknown over Ω
i.e. for t ∈ Ωx, s(t) = x(t) and for t ∈ Ωz , s(t) = z(t)

ξ Additional unknowns, typically extra model parameters
ω Combined unknown i.e. A(x, z, ξ) = A(ω)
F “Physics” mapping
c Underlying “physical” values i.e. c = F (s)

M “Measurement” mapping. y = A(x, z, ξ) = M

(
F (x, z, ξ)

)
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x ∼ N (µx,Γx) Stating variable x to be normally distributed
with mean µx ∈ Rnx and covariance Γx ∈ Rnx×nx

πx(x) = π(x) Probability density function of variable x. π(x) ≥ 0 for all x and
∫
∞ π(x)dx = 1

E Expectation operator i.e. E(x) = µx and E((x− µx)(x− µx)T ) = Γx
σ2
e Homogeneous noise variance σ2

e ∈ R i.e. e ∼ N (µe,Γe) with Γe = σ2
eInd

xtik Standard Tikhonov regularised solution xtik = minx

{
‖y −Ax‖22 + α ‖x‖22

}
α ∈ R Tikhonov regularisation parameter

Â “Regularised” A. In standard Tikhonov estimation, Â =

(
A√
αInx

)
∈ R(nd+nx)×nx

d̂ “Regularised” d. For standard Tikhonov, d̂ =

(
d

0nx,1

)
∈ R(nd+nx)×1

x̄ ∈ Rnx̄ Higher resolution approximation of unknowns of interest i.e. nx̄ > nx
πx(x) Prior probability distribution

πd|x(d|x) Likelihood probability distribution
πx|d(x|d) Posterior probability distribution
xMAP Maximum a Posteriori estimate

xCM = µx|d Conditional mean estimate
xj The j’th sample of x

ε ∈ Rnd Bayesian approximation error e.g. ε = Ā(ω̄)−A(x)
µ̂x Approximation of µx, typically from samples
Γ̂ Approximation of Γ, typically from samples

Γx|d ∈ Rnx×nx Posterior covariance
σ̂ ∈ Rnx Diagonal of Γx|d

Px,x̄ ∈ Rnx×nx̄ Projection matrix from x̄ to x i.e. x = Px,x̄x̄
Cx̄,s̄ ∈ Rnx̄×ns̄ “Cutting” matrix such that x̄ = Cx̄,s̄s̄. Note that Cx̄,s̄ = Px̄,s̄

L A matrix such that LLT = Γ

L̃x A matrix such that L̃T L̃ = Γ−1

X̂ ∈ Rnx×m Sample matrix of x i.e. X̂ = (x1, x2, . . . , xm)
X ∈ Rnx×m Mean removed sample matrix i.e. X = (x1 − µx, x2 − µx, . . . , xm − µx)
Υ ∈ Rnd×m Mean removed sample matrix of ε
Q̂x ∈ Rnx×nx Unitary matrix spanning columns of X
R̂x ∈ Rnx×m Upper triangular matrix such that X = Q̂xR̂x
Qx ∈ Rnd×rx Matrix with orthonormal columns approximately spanning columns of X
Rx ∈ Rrx×m Upper triangular matrix such that X ≈ QxRx
Mx ∈ Rrx×rx Mx = 1

mRxR
T
x

Mε|x ∈ Rrε×rε Mε|x = 1
m

(
RεR

T
ε −RεRTx (RxR

T
x )−1RxR

T
ε

)
κ ∈ R Small positive number
As,r r term series expansion approximation of A e.g. A ≈ As = UrDrV

T
r

Ac Compressed approximation to A .g. A ≈ Ac = UrDrV
T
r
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O Order e.g. an operation requiring 2n2 + 42n + 9, 999 flops would be said to require O(n2)
flops

ζ Residual e.g. ζ = x† − xt
F(x) Fourier transform of x
F(x) Discrete (fast) Fourier transform of x
Jx The Jacobian of A at particular value x

TV(x) Total variation (TV) of x. For differentiable x over Ω, TV(x) =
∫

Ω |∇x(t)|dt
TV(x) Finite dimensional analogue total variation
∇x Gradient of x
∇ · F Divergence of continuously differentiable vector field F
Kx Stiffness matrix of finite element method corresponding to particular x
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Chapter 1

Introduction

We can generally think of inverse problems as problems where we wish to reconstruct param-
eters from indirect measurements. In this thesis, I define inverse problems to be problems of
parameter estimation that are ill-posed in the sense of Hadamard [1]. When solutions to a prob-
lem exist, are unique, and are stable, the problem is well-posed. When any of these conditions
are not satisfied, the problem is ill-posed. In this thesis, “inverse problems” are ill-posed prob-
lems of reconstructing parameters from indirect measurements corrupted by noise. This is the
typical usage of the term inverse problem in mathematical literature [2, 3, 4, 5].

Inverse problems as defined above arise naturally in a wide variety of applications, such
as such as medicine [6, 7, 8, 9, 10], cosmology [11, 12, 13, 14], engineering [15, 16, 17, 18],
synthetic aperture radar [19, 20], finding and evaluating mineral deposits [21, 22, 23, 24, 25]
and astronomy [14, 26]. As a result, there is much interest and activity in the field of inverse
problems. Inverse problems are often high dimensional, making them difficult to analyse and
solve, particularly in industrial applications where timeframes are narrow [27, 28, 29, 30].

A recurring issue with inverse problems is computational cost [3, 4, 31, 32]. This is often
due to the forward model requiring extremely high dimensional approximations to simulate the
physical system to sufficient accuracy. In many applications, the computational power required
makes it prohibitively difficult to analyse or implement a solver of the inverse problem. For
example, in the dental tomography problem of [33, 34, 35], the dimension of the data and
measurements can be 106 − 107. Approaching this problem directly would require a 1012 −
1014 element linear forward model, and creating the inverse model would require 1018 − 1021

arithmetic operations. The reason this particular problem is currently approachable is due to
the sparsity of the forward model and some useful analytic results, dramatically reducing the
above generic operator (full matrix) computation costs. This thesis aims to not only develop
new methods that could apply to new problems, but also show how they can be incorporated to
improve existing methods that e.g. exploit sparsity.
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12 CHAPTER 1. INTRODUCTION

Thesis Aims

The aim of this thesis is to provide methods by which the computational burden associated
with inverse problems can be reduced. I shall consider both the offline (laboratory) and online
(implementation) stages of solving inverse problems.

The “recursive QR” method of computing low rank approximations of matrices from sam-
ples is introduced in this thesis. This is of particular interest when combined with the Bayesian
Approximation Error (BAE) framework of [36]. When recursive QR and BAE are used to-
gether, low rank approximations to relevant matrices with can be constructed with minimal
additional time.

The results of [37] are extended in this thesis. The original work shows how randomised
sampling can be used to form approximate decompositions of matrices, referred to as “global
sample approximations” or “global sample compressions” in this thesis. Since publication in
2011, the original paper has accrued over 580 citations in such diverse fields as image analysis
[38], neuroscience [39] and geophysics [40]. The extension in this thesis is to the problem of
finding an approximation that is “accurate” in a specific region. This extension is also appli-
cable to nonlinear operators. Such approximations are referred to as “local sample approxima-
tions” or “local sample compressions” in this thesis. This thesis demonstrates how to combine
local sample compressions with recursive QR and BAE.

The ideas of BAE, recursive QR and local sample approximation are combined in a variety
of ways in this thesis to make multiple methodological improvements. Application of these
methods is shown with example problems. In this thesis, a 2010 laptop with 2.4 GHz dual core
CPU, 4 GB of RAM and 250 GB hard drive is used. In the applications considered, matrices of
interest contain 70, 000, 000, 000 elements and may not be sparse e.g. covariance matrices or
inverses of sparse matrices. In IEEE 754 double-precision binary floating-point format, such a
matrix would occupy 550 GB of RAM. Using the methods of this thesis, the offline stage takes
around 1 minute and the online stage takes around 0.3 seconds.

Thesis Structure

Chapter 2 of this thesis formally reviews and describes the field of inverse problems. The
chapter concludes by introducing the problem of deconvolving a signal in 1 dimension. This
particular problem is returned to multiple times for the sake of demonstrating various methods.

Chapter 3 discusses some methods of computing estimates in inverse problems. These
methods are called “regularisation”, and allow for a “plausible” solution to be found.

Chapter 4 reviews the Bayesian framework for inverse problems, and demonstrates how
regularisation methods can be interpreted within this framework. The Bayesian framework pro-
vides a natural way to both explicitly consider the assumptions made in regularisation methods
and to quantify uncertainty in reconstructions.
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Chapter 5 discusses priors. The prior is used to formally describe how “plausible” a so-
lution is. The construction of various priors is shown, along with how these priors impact the
inverse problem “solution”. The computational cost of using these priors is also discussed.

Chapter 6 discusses various computational methods for inverse problems. This is the most
important chapter in the thesis. Of particular interest is my discussion of the “Bayesian Ap-
proximation Error” (BAE) framework of [36] and the “global sample approximation” of [37].
The technique of “recursive QR” is presented, and application of recursive QR to BAE and
global sample approximation is shown. An extension of [37] to form the “local sample approx-
imation” is also presented.

Chapter 7 combines the concepts of earlier chapters to present a computationally efficient
approach for inverse problems making use of the methods of Chapter 6.

Chapters 8, 9 and 10 each approach a seperate inverse problem with the methods of this
thesis. These chapters are not in depth studies of the applications, presented instead as demon-
strations of the methodological improvements proposed in Chapters 6 and 7.

Chapter 8 applies the methods of this thesis to 2D deconvolution. This is a natural problem
to consider, increasing the computational complexity over the 1D deconvolution example.

Chapter 9 applies the methods of this thesis to x-ray tomography. This is also a linear
problem, but with different structure and implementation issues. This demonstrates how the
methods of this thesis can be adapted for a variety of problem types.

Chapter 10 applies the methods of this thesis to a simplified case of conductivity imaging.
This nonlinear problem demonstrates how the presented methods can be applied to a more
general case.

Chapter 11 concludes the thesis. A summary of the ideas presented in this thesis and how
they can be applied together to reduce computational costs in the offline and online phases is
given, along with a discussion of some potential future work.
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Chapter 2

Inverse Problems

This chapter outlines the nature of inverse problems. Rigorous investigation of inverse prob-
lems is generally attributed to Tikhonov and Arsenin [41]. This chapter primarily follows the
discussion of [4].

Let a physical system modelled as

d = Ae(x, e) (2.1)

where d is measured data, Ae is a physical model, x are parameters of the model and e are
additional unknowns. Let

y = A(x) (2.2)

where y is the model prediction. Note the absence of e. We refer to finding y given x as the
forward problem. We refer to A is the forward operator, or forward mapping. We refer to
finding x given d as the inverse problem.

Consider having an object casting its shadow on a wall. The forward model is examining
the object and predicting the shadow. In this case, x is the geometry of the object and d is
the shadow. The inverse problem is estimating the geometry of the object by examining the
shadow. This example illustrates the problem of uniqueness in inverse problems. If you see a
circle on the screen, you do not know if the projectionist is holding up a ball, a disc, a rod, or
any other object with a round silhouette. The “solution” to the inverse problem is not unique.

Now suppose you see the shadow once the object is rotated 90 degrees. If you still see a
circle, you might conclude the object is a sphere. If you see a vertical line, you might think it
is a coin. This is illustrated in 2.1, along with a third possibility - that the two circle shadows
could also correspond to two interlocked coins. This additional data removes some possible
solutions, but solutions are still not unique.

We also consider stability. In the forward problem, this would correspond to a small change
in the object causing a large change in the shadow. This cannot happen for this forward model,
so this forward problem is considered stable.

15
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Figure 2.1: Shadows of 3 objects at 0 and 90 degree rotations

Consider now the stability of the inverse problem. Could a small change in the shadow d
cause a large change in our reconstruction of x? A small aberration in the shadow of a long
object could require removing a large volume from the reconstruction. This inverse problem
would therefore be considered somewhat unstable.

Another consideration is existence. For example, what if we do not move the object, but
the object moves on its own, changing the shadow d? Our model Ae does not allow for this
possibility, so we would say there is no such x for this data d.

Consider the problem of finding x in the equation d = Ae(x, e) where d and Ae are known.
When solutions to the problem exist, are unique and are stable, the problem is well-posed (in
the sense of Hadamard) [1]. We would also refer to Ae as well-conditioned. If a problem fails
to satisfy any of these conditions, the problem is ill-posed, and Ae as ill-conditioned. In this
thesis, “inverse problems” are ill-posed problems of reconstructing parameters from indirect
measurements corrupted by noise. This definition is consistent with most mathematical texts
on inverse problems [2, 3, 4].

2.1 Linear Finite Dimensional Inverse Problems

Let a system be modelled as

d = Ae(x, e) = A(x) + e (2.3)

which we call the additive noise model. Let this model be represented as

d = Ax+ e (2.4)
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where d ∈ Rnd , x ∈ Rnx , A ∈ Rnd×nx and e ∈ Rnd . This thesis refers to A and x as
the discretisation of A and x. Linear models are used in various applications, such as radio
astronomy [26], computed tomography [10] and radar imaging [20]. By considering finite
dimensional linear models, we can ground our discussion of inverse problems in linear algebra.

We are primarily concerned with R in this thesis, so we give results for real valued matrices
B ∈ Rn×m where n and m are arbitrary natural numbers. Many of these results extend to C,
but I only give results for R as this is the focus of this thesis.

Many of these results can be found in standard linear algebra textbooks such as [42]. We
primarily refer to [43] and [44]. Application of these concepts to inverse problems is given in
[2]. Additional notes on computation can be found in [32] and analysis in [45].

Theorem 2.1.1 (Eigendecomposition of Real Symmetric Matrices). For all real, symmetric
matrices B ∈ Rn×n there exist matrices U and Λ such that

B = UΛUT (2.5)

where U =
(
u1, u2, . . . , un

)
∈ Rn×n with UUT = UTU = In and uj ∈ Rn, and Λ =

diag
(
λ1, λ2, . . . , λn

)
with λj ∈ R and λj ≥ λk for all j ≤ k. Furthermore Buj = λjuj .

Proof See [42, 43].

Now consider the more general case. Let B be an arbitrary matrix in Rn×m. The matri-
ces BBT ∈ Rn×n and BTB ∈ Rm×m are symmetric. This leads us to the Singular Value
Decomposition (SVD).

Theorem 2.1.2 (The Singular Value Decomposition (SVD)). For all matrices B ∈ Rn×m
there exist matrices U ∈ Rn×n, D ∈ Rn×m and V ∈ Rm×m such that

B = UDV T (2.6)

with BBT = U(DDT )UT the eigendecomposition of BBT and BTB = V (DTD)V T the
eigendecomposition of BTB. That is, UUT = UTU = In, V V T = V TV = Im, and

D =

(
Drt 0rt,m−rt

0n−rt,rt 0n−rt,m−rt

)
(2.7)

where D = diag
(
d1, d2, . . . , drt

)
∈ Rrt×rt and dj ≥ dk > 0 for all j ≤ k.

Proof See [42, 43].
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We refer to rt as the rank of B. We refer to B as a rank rt matrix. Note that the right 0
blocks of D disappear when rt = m, the bottom 0 blocks disappear for rt = n, and 0 ≤ rt ≤
min{n,m}.

We often break up the SVD as

B = UDV T = UrtDrtV
T
rt + Unull0n−rt,m−rtV

T
null (2.8)

= UrtDrtV
T
rt (2.9)

where Urt ∈ Rn×rt , Drt ∈ Rrt×rt , Vrt ∈ Rm×rt , Unull ∈ Rn×(n−rt), and Vnull ∈ Rm×(m−rt).
The form in Equation (2.9) is called the thin SVD.

We now define the 4 fundamental subspaces of B. The columns of Vnull make up the null
space or kernel of B, so named because

B

 m∑
j=rt+1

bjvj

 =

m∑
j=rt+1

bj (Bvj)︸ ︷︷ ︸
=0

= 0. (2.10)

Similarly, the columns of Unull make up the null space of BT , also known as the left nullspace
or cokernel of B. The columns of Urt make up the range, column space or image of B. The
columns of Vrt form the row space or coimage of B. Note that for any x ∈ Rm we can write

Bx = B
m∑
j=1

bjvj = B

rt∑
j=1

bjvj (2.11)

= y =

rt∑
j=1

cjuj =

rt∑
j=1

djbjuj (2.12)

where bi ∈ R and djbj = cj ∈ R.
We now return to the model d = Ax + e = y + e. The SVD A = UDV T allows us to

analyse various aspects of the the forward operator:

• The rank rt of the matrix. When rt < min{nd, nx}, we say A is rank deficient.

• Given a tolerance τ , which is typically a fraction of the largest singular value e.g.
τ = d1

100 or some small multiple of machine tolerance, we take the number of diago-
nal elements with ||dj || > τ as r. We call r the effective or numerical rank, depending
on how we choose the tolerance. When r < min{nd, nx}, we say A is effectively or
numerically rank deficient.

• Decomposing x = b1v1 + b2v2 + · · · + bmvm implies y = Ax = d1b1u1 + d2b2u2 +
· · ·+ dmbmum. Keeping in mind that d1 ≥ d2 ≥ · · · ≥ dm, we see how components of
x are amplified in y.
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Now consider the problem of finding x ∈ Rnx in the equation Ax = y given we know
A ∈ Rny×nx and y ∈ Rny . In the case that nx < ny, we say the problem is overdetermined.
In the case that nx > ny, we say the problem is underdetermined.

The condition number of full rank A is defined as κ = d1
drt

. IfA is rank deficient, we define
κ =∞. When κ is low (near 1) finding x from y is a stable problem. When κ is large, finding
x from y is an unstable problem. Finding x from data d = Ax + e would therefore be an
inverse problem by our definition.

We wish to solve Ax = y for x. It could be no such x exists. We instead find the noiseless
least squares estimate

xls,n = min
x
{‖Ax− y‖2} (2.13)

where ‖•‖2 is the typical vector 2-norm. Note that xls is not necessarily unique. We refer to
the set of all xls,n as Xls,n.

We now define some language for this thesis. Let

d = Axt + e (2.14)

where xt is the ground truth. The least squares problem is finding the (noisy) least squares
estimate

xls = min
x
{‖Ax− d‖2} (2.15)

where we note the substitution of y from Equation (2.13) for d in Equation (2.15). We define
this xls to be a solution of the least squares problem, and a estimate of the ground truth.

The Moore-Penrose pseudoinverse of A is formed as

A† = V D†UT (2.16)

=
(
Vrt Vnull

)( D−1
rt 0rt,m−rt

0n−rt,rt 0n−rt,m−rt

)(
UTrt
UTnull

)
(2.17)

= VrtD
−1
rt U

T
rt (2.18)

where we note that D−1
rt = diag( 1

d1
, 1

d2
, . . . , 1

drt
). In this thesis, we will refer to the Moore-

Penrose pseudoinverse as simply the pseudoinverse, and the form in Equation (2.18) as the thin
pseudoinverse. Other types of pseudoinverse can be found in [43, 44].

Note that

AA† = UDV TV D†UT = UDD†UT = UÎrt,nyU
T (2.19)

where

Îrt,ny =

(
Irt 0rt,ny−rt

0ny−rt,rt 0ny−rt,ny−rt

)
∈ Rny×ny (2.20)
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and Ir ∈ Rrt×rt is the (r × r) identity matrix. Similarly

A†A = V D†UTUDV T = V D†DV T = V Ir,nxV
T (2.21)

and clearly in the case that r = nx, A†A = V InxV
T = Inx and in the case that r = ny,

AA† = UIr,nyU
T = Iny . We now present a key theorem.

Theorem 2.1.3 (Optimality of the Pseudoinverse).

x†,n = A†y = min
x∈Xls,n

||x||2 (2.22)

Proof See [42, 43].

In other words, x†,n is the solution of the noiseless least squares problem with minimum
2-norm. We call x†,n the (noiseless) pseudoinverse solution of the (noiseless) least squares
problem. We can use the SVD to characterise all least squares solutions.

Theorem 2.1.4 (Least Squares solutions and the SVD). For all xls,n ∈ Xls,n,

xls,n = min
x
{‖Ax− y‖2} = A†y +

nx∑
j=rt+1

bjvj (2.23)

where each bj ∈ R is arbitrary.

Proof Proofs can be found in [42, 43, 44]. We give a proof here to emphasise the interpretation.
Given that x†,n = A†y minimises ‖Ax− y‖2, i.e.

∥∥Ax† − y∥∥
2

= α, then∥∥∥∥∥A
(
x† +

nx∑
i=r+1

bivi

)
− y

∥∥∥∥∥
2

=

∥∥∥∥∥∥Ax†,nr +

nx∑
i=r+1

bi (Avi)︸ ︷︷ ︸
=0

−y

∥∥∥∥∥∥
2

=
∥∥∥Ax†,n∥∥∥

2

= α

Given that the singular values dj of A are positive, the above is also used in the proof of
the optimality of the pseudoinverse.

The pseudoinverse solution is widely used. This would imply that solutions with smaller 2-
norms are in some way preferable. This leads us into the idea of picking x = x†+

∑nx
i=r+1 bivi

to have particular features. This will be discussed in more depth later in this thesis in Chapters
4 and 5.

We now consider a few cases:
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• nx ≥ ny = rt. This is the underdetermined full rank case. Then A = UDV T =
UDnyV

T
ny . ThereforeA

∑nx
j=ny+1 bjvj = 0ny ,1 for all bj ∈ R, andAx = y has solutions

for all y. Therefore

xls,n = min
x
{‖Ax− y‖2} = A†y +

nx∑
j=ny+1

bjvj

with

Axls,n = y

for all y. That is, exact solutions of the noiseless least squares problem exist but are not
unique.

• nx ≥ ny > rt. This is the underdetermined rank deficient case. Then A = UDV T =
UrtDrtV

T
rt . We can write y =

∑rt
j=1 cjuj +

∑ny
j=rt+1 cjuj and note that

xls,n = min
x
{‖Ax− y‖2} = A†y +

nx∑
j=rt+1

bjvj

with

‖Axls,n − y‖2 =

∥∥∥∥∥∥
ny∑

j=rt+1

cjuj

∥∥∥∥∥∥
2

=

√√√√ ny∑
j=rt+1

c2
j

i.e. we can find x such thatAx fits y up to the projection of y on the subspace spanned by
the columns of Ur. So exact solutions of the noiseless least squares problem may exist
but are not unique.

• ny ≥ nx = rt. This is the overdetermined full (column) rank case. ThenA = UDV T =
UnxDnxV

T . Therefore

xls,n = min
x
{‖Ax− y‖2} = A†y

where we note that xls,n is unique. We further note that

‖Axls,n − y‖2 =

∥∥∥∥∥∥
ny∑

j=nx+1

cjuj

∥∥∥∥∥∥
2

=

√√√√ ny∑
j=nx+1

c2
j

i.e. we can find x such thatAx fits y up to the projection of y on the subspace spanned by
the columns of Ur. So exact solutions of the noiseless least squares problem may exist
and are unique.
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• ny ≥ nx > rt. This is the overdetermined rank deficient case. Then A = UDV T =
UrtDrtV

T
rt . Therefore

xls,n = min
x
{‖Ax− y‖2} = A†y +

nx∑
j=rt+1

bjvj

noting that xls,n is not unique in this case. We further note that

‖Axls,n − y‖2 =

∥∥∥∥∥∥
ny∑

j=nx+1

cjuj

∥∥∥∥∥∥
2

=

√√√√ ny∑
j=nx+1

c2
j

similar to the ny ≥ nx = rt case. So exact solutions of the noiseless least squares
problem may exist and are not unique.

We can demonstrate concepts relating to the SVD in the simple case of fitting a polynomial
to data.

2.2 Demonstration: Fitting a Polynomial

Let a real valued function y(t) be known at points t =
(
t(1), t(2), . . . , t(n)

)
∈ Rn. Let t(j) 6=

t(k) for all j 6= k. The function values are in a vector y =

(
y
(
t(1)

)
,y
(
t(2)

)
, . . . ,y

(
t(n)

))
∈

Rn. We want to approximate y(t) with a polynomial x(t) = x(1)t2 + x(2)t + x(3) where
x =

(
x(1), x(2), x(3)

)
∈ R3 is the vector of polynomial coefficients. We are trying to find x

such that y(j) ≈ x(3)t(j)2 + x(2)t(j) + x(1) i.e. we try to fit x to y.
We construct a matrix

A =


1 t(1) t(1)2

1 t(2) t(2)2

...
...

...
1 t(n) t(n)2

 (2.24)

such that Ax ≈ y. We shall work through a few different cases to show how the problem can
be understood in terms of the SVD.
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Case 1: n = 2. Finding x from y is underdetermined. We shall take

t =

(
1
2

)
, y =

(
6
15

)
, (2.25)

A =

(
1 1 1
1 2 4

)
= UDV T (2.26)

≈
(
−0.3245 −0.9459
−0.9459 0.3245

)(
4.8375 0 0

0 0.7735 0

)−0.2626 −0.8033 0.5345
−0.4581 −0.3837 −0.8018
−0.8492 0.4554 0.2673

T

.

(2.27)

Figure 2.2: A few parabolas that fit the data

We see immediately that this is an underdetermined full rank problem. This is what we
expect, as we know that there are infinitely many parabolas that pass exactly through a given
2 points. In other words, exact solutions exist but are not unique. We show this in Figure 2.2,
where we plot 3 parabolas that fit the data, but with different nullspace component v3.

We now analyse y = Ax. We generate multiple xj ∈ R3 with ‖xj‖2 = 1. We plot these
example xj values in Figure 2.3. We then compute yj = Axj for each xj . These are plotted in
Figure 2.4, along with d1u1 and d2u2. This shows how we can expect to get y’s with a large
component along u1 and a smaller component in u2. Also recall that components of x along
v3 will map to 0. It is this effect that “fills in” the ellipse in Figure 2.4.

We now analyse x = A†y where A† = V D†UT . We generate multiple yj with ‖yj‖2 = 1.
These are plotted in Figure 2.5. We then plot xj = A†yj in Figure 2.6 as red circles. We also



24 CHAPTER 2. INVERSE PROBLEMS

Figure 2.3: Several xj with ‖xj‖2 = 1 Figure 2.4: Corresponding yj = Axj

plot xj,2 = xj + v3 as orange circles. Each xj,2 is a solution to minx {‖Ax− y‖}, but with a
nullspace v3 component, plotted in green. We also plot 1

d1
v1 in black and 1

d2
v2 in blue.

Figure 2.5: Several yj with ‖yj‖2 = 1. Figure 2.6: Corresponding xj = A†yj

These visualisations show how information can be nearly/completely lost, in terms of the
SVD. These concepts are at the core of inverse problems, and we will return to them often.

The above example is trivial, yet easy to visualise. We can see and understand that solutions
are not unique.
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Consider the case n = 3 i.e. we know y =

(
y
(
t(1)

)
,y
(
t(2)

)
,y
(
t(3)

))
. There is x such

that y = Ax. The solution x is exact and unique.

Consider the case n > 3. There may be an exact solution x to Ax = y, but there probably
is no exact solution. The least squares solution however does exist and is unique. We will
not go into detail for these cases as that would offer little additional insight. We shall instead
discuss a simple inverse problem that raises issues of stability.

2.3 1D Deconvolution

Let s(t) be a real valued 1 dimensional function. We take the support of s to be Ω = [0, 20].
Let Ωx = [5, 15] the domain of x(t) and Ωz = [0, 5) ∪ (15, 20] the domain of z(t).

Let c(t) be the convolution of s(t) with the kernel ξ(t). This can be modelled as

c(t) = F(s, ξ) (2.28)

=

∫ ∞
−∞

ξ(t− τ )s(τ )dτ (2.29)

where F is the continuous convolution operator.

Let t =
(
t(1), t(2), . . . , t(n)

)
=
(
0,∆t, 2∆t, . . . , n∆t = 20

)
∈ Rn be evenly spaced

points in Ω. Let tx ∈ Rnx be the subset of t in Ωx and tz ∈ Rnz be the subset of t in Ωz . Note
that n = nx + nz .

Let td ∈ Rnd be a subset of tx. We say that these are the measurement points. Note that
the measurement points are in Ωx for this problem. Let

y = M

(
c(t)

)
(2.30)

= M

(
F(s, ξ)

)
(2.31)

= A(s, ξ) (2.32)

where y ∈ Rnd is the forward model prediction. M is the continuous “measurement” operator,
here simply extracting c(t) at points td. A is the continuous forward operator.
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Let

x =

(
x
(
tx(1)

)
,x
(
tx(2)

)
, . . . ,x

(
tx(nx)

))
∈ Rnx (2.33)

z =

(
z
(
tz(1)

)
, z
(
tz(2)

)
, . . . , z

(
tz(nz)

))
∈ Rnz (2.34)

s = (x, z) ∈ Rn (2.35)

ξ =

(
ξ
(
t(1)

)
, ξ
(
t(2)

)
, . . . , ξ

(
t(n)

))
∈ Rn (2.36)

be finite dimensional approximations of x, z, s and ξ respectively. We now consider the finite
dimensional problem

d = A(s, ξ) + e (2.37)

= MFξs+ e (2.38)

= Mc+ e (2.39)

= y + e (2.40)

where d ∈ Rnd is the measured data. F ∈ Rn×n is the discrete convolution operator, approx-
imating the integration in Equation (2.29) by quadrature, using the values in s and ξ. c ∈ Rn
is an approximate finite dimensional approximation of the convolved signal, c(j) ≈ c(t(j)).
M ∈ Rnd×n is the discrete measurement operator, extracting values of c corresponding to the
measurement points td. y ∈ Rnd is an approximate finite dimensional approximation of the
convolved signal at the measurement points, y(j) ≈ y(j) = c(td(j)).

We use a Gaussian kernel for this problem. We plot the convolution kernel in Figure 2.7.
Note that the integral in Equation (2.29) extends over all of R. The subdomain Ωz is wider
than the kernel ξ. The signal z in Ωz is referred to as “padding” for the signal x in Ωx. The
effect of padding is to ensure that

c(t) = F(s, ξ) (2.41)

=

∫ ∞
−∞

ξ(t− τ )s(τ )dτ (2.42)

≈
∫

Ω
ξ(t− τ )s(τ )dτ (2.43)

for t ∈ Ωx. Padding is important for improving the quality of the approximation

x(j) ≈ c(tx(j)). (2.44)
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Figure 2.7: The convolution kernel ξ(t)

Figure 2.8: An example discretised signal s Figure 2.9: The convolution c = Fs

Let ∆t = 0.1. With this discretisation, nx = 101, nz = 100 and n = nx + nz = 201. We
show an example discretised signal s in Figure 2.8, and the corresponding convolved signal
c = Fs in Figure 2.9.

We now examine the discretised convolution operator F . Note that F is symmetric, so
we can compute the eigendecomposition F = UΛUT rather than the more general SVD. The
eigenvalues have been plotted in Figure 2.10. In this case, only approximately a quarter of
the eigenvalues are appreciably large. This can be interpreted as about three quarters of the
information in s being almost removed from c. We can express this formally by considering
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the expansion

s =
n∑
j=1

bjuj (2.45)

where bj ∈ R and uj ∈ Rn is an eigenvector of F . We can then write

c = Fs = UΛUT s = UΛUT
n∑
j=1

bjuj =
n∑
j=1

λjbjuj (2.46)

≈
50∑
j=1

λjbjuj (2.47)

where we note that eigenvalues λj of F are such that λj ≈ 0 for j > 50.

Figure 2.10: The eigenvalues of F

We now examine the eigenvectors of F . Figure 2.11 shows the 4 largest eigenvectors of
F . Unsurprisingly, we see they correspond to slowly oscillating/very smooth inputs. These are
the kind of signals we would expect to have the largest effect on the output of a convolution
operator. Figure 2.12 shows the 4 smallest eigenvectors of F . Note that these eigenvectors
oscillate rapidly. This is expected - signals that oscillate rapidly around 0 will average to 0
after convolution. It is these rapid variations that are difficult to reconstruct, as they will have
little impact on the data.

This gives us insight into F , the “physics” part of A. To discuss A itself, we must include
the measurement model M . We shall examine A for 2 cases of M .
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Figure 2.11: The largest eigenvectors of F . Figure 2.12: The smallest eigenvectors of F .

2.3.1 Deconvolution: Case 1

Suppose nd = 11, td = (5, 6, . . . , 14, 15). Now our model A = MF ∈ R11×201 is simply the
11 rows of F corresponding to the 11 measurement points td. The “ground truth” xt is shown
in Figure 2.13. Figure 2.14 shows the full convolved signal c in Ωx, along with the measured
data d. Note that d 6= y due to the noise e. In this case, e ∼ N (0nd , σ

2
eInd) with σ2

e ≈
max{|c|}

100
i.e. 1% additive white noise.

Figure 2.13: The signal x in the region Ωx Figure 2.14: The convolution c on Ωx and the
measured data d

We now investigate the singular value decomposition A = UDV T of A. Note that we can
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write A = UDV T = UDrV
T
r where r = 11. We can write the least squares solutions as

sls = VrD
−1
r UT c+

201∑
i=12

bivi (2.48)

= A†c+

201∑
i=12

bivi (2.49)

for arbitrary bi ∈ R. We have much freedom in the fit. The singular values are plotted in Figure
2.15, and we see that while the inverse problem is extremely underdetermined, the low number
of measurement points has truncated A to the point that the condition number κA ≈ 1.3 is
quite reasonable.

Figure 2.15: The singular values of A with nm = 11

Consider the discrepancy between the pseudoinverse solutions to the noiseless and noisy
least squares problems. We can consider this formally as∥∥∥A†d−A†y∥∥∥

2
=
∥∥∥A†(y + e)−A†y

∥∥∥
2

(2.50)

=
∥∥∥A†e∥∥∥

2
(2.51)

≤
‖e‖2
d11

≈ 4.6 ‖e‖2 (2.52)

i.e. the largest possible difference between the noisy and noiseless pseudoinverse least squares
solutions is around 4.6 times the norm of the noise.

The pseudoinverse solution x† = A†d to the noisy least squares problem minx {‖d−Ax‖}
is shown in Figure 2.16 alongside the ground truth xt. We see that x† is a poor estimate of xt.
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Figure 2.17 shows the data d along withAx†. Note that even though x† is a poor approximation
to xt, Ax† is a good approximation to d.

Figure 2.16: The pseudoinverse estimate x†

alongside ground truth xt
Figure 2.17: The measured data alongside

model predictions Ax†

2.3.2 Deconvolution: Case 2

Let nm = 51, td = (5, 5.2, 5.4, . . . , 14.8, 15). Now the model A = MF ∈ R51×201 is every
second row of F . The singular values of A are plotted in Figure 2.18. Note that the spectrum
of A now contains many (approximate) zeros. In this case the condition number is κA ≈ 106

and the discrepancy in the noiseless and noisy least squares solutions is∥∥∥A†d−A†y∥∥∥
2
≤
‖e‖2
d51

≈ 107 ‖e‖2 (2.53)

which may cause problems. So while our data has “improved” in the sense that we have more
measurement points, the noise in the data can now cause large changes in the estimate x†.

Figure 2.19 shows the convolved signal c = Fs on Ωx along with the measured data
d = As + e = M(Fs) + e. Note that the variance of the noise is the same as in Figure 2.14,
but we have much more data available. We might expect the reconstruction of xt to be more
accurate now that additional data is available. However, our analysis of the singular values
makes us predict x† to be a worse estimate of xt than in the nd = 11 case.

The singular vectors of A in this case are similar to the eigenvectors of F shown in Figures
2.11 and 2.12. The singular vectors ofA corresponding to large singular values oscillate slowly,
while the smaller singular vectors oscillate rapidly. I intuitively expect that white noise e, which
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Figure 2.18: The singular values of A with nm = 51

Figure 2.19: The convolved signal and the measured data

has zero correlation length and therefore oscillates rapidly, will project predominantly onto the
smaller singular vectors of A. This can be expressed this mathematically as

e =

51∑
j=1

bjvj (2.54)

≈
51∑
j≈40

bjvj (2.55)
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where bj ∈ R is some projection coefficient and vj = V (:, j) in A = UDV T , the SVD of A.
We found the above approximation was valid for this operator A and white noise e.

The pseudoinverse solution of the noisy least squares problem can be expanded as

x† = A†d = A†(y + e) = A†y +A†e (2.56)

≈ A†y +

51∑
j≈40

1

dj
bjvj (2.57)

where I note that 1
σj

is very large and bj is not trivially small for j > 40. Another concern is
that estimation of the smaller singular values and corresponding singular vectors is susceptible
to numerical error. These terms are amplified by taking 1

dj
. These terms may also only be

artefacts of the modelling of A.
I therefore expect the pseudoinverse estimate x† will likely be highly sensitive to noise and

give physically meaningless estimates. It should be noted that this happens specifically when
the noise e has nontrivial projection onto left singular vectors of A corresponding to near zero
singular values. This is typically the case when A promotes smoothness and e has little/no
cross correlation as in white noise.

As with the nm = 11 case, I will calculate the minimum norm/standard least squares
solution x† ∈ Xls = A†d and Ax† = A(A†d). As expected, the least squares solution fits the
data well, as shown in Figure 2.21. The estimate x† of xt is plotted alongside xt in Figure 2.20.
Note the scale.

Figure 2.20: The pseudoinverse estimate x†

alongside the ground truth xt
Figure 2.21: The measured data alongside the

model predictions Ax†
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2.4 Some Notes on Computational Complexity

This thesis largely investigates reducing computational complexity. We review some concepts
of computational complexity now. More in depth reviews can be found in [32, 46].

A flop is a floating point operation. For example, the computations 1 + 2, 1− 2, 1× 2 and
1
2 all require one flop.

In this section, let B ∈ Rm×n and C ∈ Rn×p be arbitrary matrices, b ∈ Rn and c ∈ Rp be
arbitrary vectors, and a ∈ R be an arbitrary constant.

The scalar-vector product ab requires n flops. The matrix-vector product Bb requires
m(2n − 1) flops. Alternatively we say Bb requires O(mn) flops. The matrix-matrix prod-
uct BC requires mp(2n− 1), or O(mnp), flops.

Note that flop counts can be reduced when the relevant quantities have specific structure.
For example, Inb = b is computed in either 2n2−n, n or 0 flops. In this thesis, flop counts are
for arbitrary full matrices using standard algorithms unless specifically stated otherwise.

If n = m and B−1 exists, computing B−1 requires O(n3) flops. Computing the SVD of
B requires O(mn2 + n3) flops. More details on the derivation of these flop counts is found in
[32].

The computational cost of a certain task is more than just the flop count. A flop count is a
useful theoretical measure of computational complexity, but in practice the computational cost
depends on the structure of the task and the computational platform. For example, a method
of completing a task that uses fewer flops but much more memory may take more time to
complete the task. In this thesis, the benchmark of computational complexity of a task is how
long the task takes to complete on my 2010 laptop with 2.4 GHz dual core CPU, 4 GB of RAM
and 250 GB hard drive.



Chapter 3

Regularisation

Chapter 2 briefly reviewed the concept of inverse problems. Section 2.1 considered finite di-
mensional linear additive noise models of the form

d = Ax+ e (3.1)

where d ∈ Rnd is the data, A ∈ Rnd×nx is the forward operator, x ∈ Rnx is the unknown of
interest and e is additive noise/unknowns. Let

dt = Axt + et (3.2)

where xt is the “ground truth”, et the “true” error and dt is the corresponding data. Chapter 2
discussed the pseudoinverse solution to the noisy least squares problem as an approximation of
xt from data dt i.e.

xt ≈ x† = A†dt (3.3)

where A† is the pseudoinverse of A. In Section 2.3, x† was a poor approximation of xt.
In this thesis, the field of constructing estimates xreg of xt from data d is referred to as

regularisation. This definition is widely used in inverse problem literature [2, 3, 4, 41] although
we note “regularisation” is a term used in other contexts as well.

In this thesis, regularisation methods are used with the aim of estimates xreg being rep-
resentative of the ground truth xt. The estimate x1 is said to be more representative than x2

if

‖xt − x1‖2 < ‖xt − x2‖2 (3.4)

unless explicitly stated otherwise. It is often the case that xt is a finite dimensional approxima-
tion to the infinite dimensional ground truth xt. Whether xt is representative of xt is problem
specific e.g. is xt of high enough resolution.

35
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Consider the matrix B ∈ Rn×m. In this thesis, replacing B with B ≈ C with κC < κB is
called regularising B. C is called the regularised form of B.

This Chapter reviews several different regularisation techniques, and demonstrates how
they work with the deconvolution example of Chapter 2. These techniques are provided for
background, and will be referenced to throughout this thesis. Further discussion of regularisa-
tion can be found in [2, 3, 4, 32, 47].

3.1 Discretisation Methods

Some early approaches to regularisation involve reducing the number of unknowns nx or the
amount of data nd. We will discuss methods of this type first, as a simple introduction to the
field of regularisation.

Consider the model

d̄t = Ae(xt, et) (3.5)

where d̄ ∈ Rnd̄ is the data, Ae is an operator, xt is the ground truth and et is additional
unknowns and errors. Let a finite dimensional approximation be

d̄t = Āe(x̄t, ēt) (3.6)

where xt ∈ Rnx̄ is a finite dimensional approximation of xt, Ā is a finite dimensional approxi-
mation of Ae and ēt is a finite dimensional approximation of et. The aim is to estimate x̄t from
d̄t.

3.1.1 Regularisation by Discretisation

Suppose the operator Āe is ill-conditioned. We could instead consider the model

d̄ ≈ Ax,ē(x, ē) (3.7)

where x ∈ Rnx with nx < nx̄. We refer to Equation (3.7) as the coarse model, and Equation
(3.6) as the fine model. The hope is that the estimate xreg,x ∈ Rnx found from d̄t using the
coarse model Ax,ē is more representative of xt than the estimate x̄reg ∈ Rnx̄ found using the
fine model Āē. Substituting Āē and x̄ forAx,ē and xwith the aim of finding more representative
estimates is called regularisation by discretisation or regularisation by projection [4].

The effectiveness of regularisation by discretisation is intuitively clear by considering the
limiting case nx = 1. We consider the linear additive noise case

d̄ ≈ Ax,ē(x, ē) (3.8)

= Axx+ ē (3.9)
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where Ax is now a nd × 1 “matrix”, with κA = d1
dr

= ||A||2
||A||2 = 1. Let the estimate xreg,x be the

pseudoinverse estimate x†. This is found as

xreg,x = x† (3.10)

= A†xd =
1

‖Ax‖2
ATx d (3.11)

and is hopefully representative of xt.
Recall the deconvolution example of Section 2.3. Choosing low values of nx causes pseu-

doinverse estimates x† to stay approximately near 0. Such estimates are nearer xt than, for
example, the nd = 51, nx = 101 case presented.

Regularisation by discretisation has clear limitations. A finite dimensional approximation
x may be too coarse a approximation of x to be useful i.e. even knowing xt exactly would not
be useful. There is also no formal guarantee that the estimate is representative i.e. no guarantee
that xreg,x ≈ xt = Px,xxt where Px,x projects xt to xt.

3.1.2 Regularisation by Measurement Truncation

Suppose the operator Āe is ill-conditioned. We could instead consider

d ≈ Ad,e(x̄, e) (3.12)

where d ∈ Rnd with nd < nd̄ is the truncated data and e is the truncated error and additional
unknowns. The hope is that the estimate x̄reg,d ∈ Rnx̄ found from d using the coarser model
Ad,e is more representative of xt than the estimate x̄reg ∈ Rnx̄ found using the model Āē.

Substituting d̄ ∈ Rnd̄ and Āē for d ∈ Rnd andAd,e corresponds to either altering the exper-
imental design, or simply culling measurements after the fact. In this thesis, we call substituting
d̄ for d with the aim of finding a more representative estimate regularisation by measurement
truncation to emphasise the similarity with regularisation by discretisation. Regularisation by
measurement truncation is sometimes called decimation or downsampling. We use the name
regularisation by measurement truncation to highlight the similarity to regularisation by dis-
cretisation.

An example of regularisation by measurement truncation is the deconvolution example
in Chapter 2. The pseudoinverse estimate x†

d̄
with nd̄ = 51 is shown in Figure 2.20. The

pseudoinverse estimate x†d with nd = 11 is shown in Figure 2.16. The x†d estimate is clearly
more representative of xt.

We can explain how regularising a matrix A by measurement truncation or discretisation
works by considering the SVD A = UDV T . Measurement truncation effectively reduces the
dimension of U , while regularisation by discretisation reduces the dimension of V . Both sub-
sequently shrink the dimension of the rectangular matrix D, reducing the number of singular
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values. As seen in Chapter 2, this may improve the condition number of A which may in turn
result in more representative estimates.

Regularisation by discretisation and regularisation by measurement truncation both attempt
to substitute Āē with better conditioned operators Ax,ē and Ad,e respectively. In the linear
case, this corresponds to reducing the number of rows or columns in Āē respectively. Another
approach is to remove components of the operator e.g. remove singular vectors of linear Āē.
This is the fundamental idea behind regularisation by truncated series expansion.

3.2 Truncated Series Expansion

A wide variety of series expansions exist. We will primarily consider expansions of matrices,
which is covered in [42] and in greater depth in [32, 45]. An example of a series expansion
of a nonlinear operator is the Taylor series [48]. When the expansion being considered is of a
stochastic process, a thorough discussion can be found in [49]. Expansions used in nonlinear
inverse problems often make use of the celebrated Karhunen-Loève theorem [50, 51]. Particu-
larly notable is the Proper Orthogonal Decomposition (POD) [52, 53, 54]. Note that the POD
of a matrix is exactly the SVD. A particularly concise analysis is given in [52].

Consider the linear finite dimensional additive noise model

d = Ax+ e = y + e (3.13)

and recall that we can expand the forward operator A as

A = UDV T = UrtDrtV
T
rt (3.14)

where rt is the rank of A. The pseudoinverse estimate can be formed as

x† = VrtD
−1
rt U

T
rtd (3.15)

= A†d (3.16)

= A†y +A†e. (3.17)

Note that
∥∥A†∥∥

2
= 1

drt
, where drt is potentially very small. The A†e term is therefore poten-

tially large. Computation of smaller singular values is also susceptible to numerical error [32],
leading to large error when constructing A†. A potential means of avoiding these issues is to
instead consider the approximation

A ≈ Ar = UrDrV
T
r (3.18)

where r < rt. We call Ar the truncated SVD (tSVD) of A. The smallest singular value is now
dr. Typically, r is chosen either to control the condition number d1

dr
or to ensure dr > ε, where
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ε is some numerically motivated small number e.g. a multiple of machine epsilon. Sometimes
r is chosen as the computational resources available only allow for r singular vectors to be
computed.

It is worth noting that two subtly different approaches exist in this category. We can either
create a truncated expansion of A, or of x. If we expand A, the solution x we give will
necessarily be in terms of this expansion. On the other hand, an expansion of x means A
will only interact with these components, so we have implicitly imposed a truncated expansion
on (the right hand side of) A.

The tSVD is a particular example of a truncated series expansion. When the model is a
matrix, the SVD is a natural expansion to use, as it is well understood and has a wealth of
computational methods for its computation [32]. Furthermore,

Ar = min
B:rank(B)=r

‖A−B‖2 (3.19)

that is, the tSVD is the best (in matrix 2-norm) rank r approximation to A [42]. Other approx-
imations to A ∈ Rn×m can be written in the form

A ≈ As,r =

r∑
j=1

aj(bjc
T
j ) (3.20)

where aj ∈ R, bj ∈ Rnd and cj ∈ Rnx . We make use of bold face for vectors in this section
to avoid confusion with scalars. Note that As,r is still an r term expansion of A, with the
tSVD expansion Ar being the (matrix 2-norm) “best” expansion. Another expansion could be
the bj’s and cj’s are discretised sines and cosines. While this may not be the “best” r term
expansion of A, only the scalar aj’s need to be computed. For example, suppose the matrix A
is a 2D image. The JPEG compression of A uses discrete cosines for the bj’s and cj’s [55],
meaning only the scalar aj’s need to be computed and stored in memory in order to reconstruct
the image.

Now suppose A is some image processing technique, and x is a (vectorised) image. We
might only want x to be used as a JPEG of certain quality, so we might impose that x be
expressed in the JPEG (discrete sines and cosines) basis. That is, x is of the form

x =
r∑
j=1

ajbj (3.21)

= Ba (3.22)

where aj ∈ R, a = (a1, a2, . . . , ar) ∈ Rr, bj ∈ Rnx and B = (b1,b2, . . . ,br) ∈ Rnx×r.
Rather than considering the nx dimensional problem of estimating xt ∈ Rnx , we consider the
r dimensional problem of finding at ∈ Rr such that xt = Bat. This is an example of the subtle
difference between expanding A and expanding x.
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The approach of compressing x and/or d with an expansion not derived fromA is similar to
regularisation by discretisation and regularisation by measurement truncation. For example in
regularisation by discretisation, the nx̄ dimensional problem of estimating x̄t is replaced with
the nx problem of estimating xt. By expressing x in a r term expansion, the nx dimensional
problem of estimating xt ∈ Rnx is replaced with the r dimensional problem of finding at ∈
Rr. Note that regularisation by discretisation and truncated series expansion both reduce the
“resolution” of the estimates, even though the number of elements in x remains the same when
taking the truncated series expansion. This view of “resolution” will be used throughout this
thesis.

It is worth noting that some methods apply a truncated series expansion implicitly. For
example, some methods may convert data to the frequency domain, and apply a filter, [47, 56].
Converting data to the frequency domain is the same as expressing

d =

nd∑
j=1

ājbj (3.23)

= Bā (3.24)

where āj ∈ R, ā = (ā1, ā2, . . . , ānx) ∈ Rnd is the frequency domain data and bj ∈ Rnd is a
discrete sine/cosine such that BBT = BTB = Ind where B = (b1,b2, . . . ,bn). Let

a = F (ā) (3.25)

where a is the filtered frequency domain data, and F is the filter.
Consider the idealised low-pass filter, also known as the sinc or square filter. For this filter,

F = Ir,nd i.e.

a = F (ā) (3.26)

= Ir,nd ā (3.27)

where r ∈ N is the cutoff wavenumber. Further analysis is then done on a. This is the same
as expressing data d as a r term series expansion of sines and cosines. We will discuss more
complex filters in Chapters 5 and 6.

Let us return to the nd = 51 deconvolution example of Section 2.3.2. Take the tSVD
expansion

A = UDV T (3.28)

≈ UrDrV
T
r = Ar (3.29)

to form the r term tSVD pseudoinverse estimate

x†r = A†rd = VrD
−1
r UTr d (3.30)



3.2. TRUNCATED SERIES EXPANSION 41

Figure 3.1: 10 term tSVD estimate
x†10 = A†10dt alongside xt

Figure 3.2: 10 term tSVD estimate model
predictions Ax†10 = AA†10dt alongside dt

where we will consider r = 10, 20 and 30.
The estimate x†10 found using a 10 term truncated SVD expansion of A is shown in Figure

3.1 alongside the ground truth xt. Note the estimate is “overly smooth”. This makes sense
when we consider that the largest singular vectors of A were found in Chapter 2 to be smooth.
The estimate x†10 is a combination of “smooth” terms and is therefore smooth.

The quality of the fit to the data d of the 10 term tSVD estimate is shown in Figure 3.2.
Note the visible disagreement between the data d and the predictions Ax†10 = AA†rd.

Compare the 10 term tSVD estimate in Figure 3.1 and the fit to the data in Figure 3.2 to the
(51 term) pseudoinverse estimate in Figure 2.20 and the fit to the data in Figure 2.21. Note that
a better fit to the data d is not necessarily a better approximation to the ground truth xt.

The estimate x†20 found using a 20 term tSVD expansion of A is shown in Figure 3.3.
Note that this better captures the “less smooth” components of the xt. This is because x†20 is
constructed with some “less smooth” components that x†10 lacked. We also plot the predictions
Ax†20 = AA†20d with the data d in Figure 3.4. Note that Ax†20 is closer to d than Ax†10.

The estimate xtsvd,30 found using a 30 term tSVD expansion of A is shown in Figure 3.5.
Note that this solution is now “overly nonsmooth”. This can be understood by expanding

x†30 = A†30d (3.31)

= A†20d+
30∑
j=21

1

dj
vj(u

T
j y) +

30∑
j=21

1

dj
vj(u

T
j e) (3.32)

and noting that y is smooth while uj and e are nonsmooth for j > 20. Therefore uTj y will
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Figure 3.3: 20 term tSVD estimate
x†20 = A†20dt alongside xt

Figure 3.4: 20 term tSVD estimate model
predictions Ax†20 = AA†20dt alongside dt

likely be small while uTj e will likely be large, and then amplified by 1
dj

which is also large for
j > 20.

The predictions Ax†30 = AA†30d are plotted in Figure 3.6 alongside the data d. Note that
the fit to the data is closer than in the 10 term and 20 term cases shown in figures 3.2 and
3.4 respectively. This is because we are converging to the (r=51) pseudoinverse estimate A†d
shown in Figure 2.20 which fits the data as shown in Figure 2.21.

The above discussion has focussed on taking the truncated expansion induced by the model
A as found by the SVD. However, as discussed earlier, we can also create a truncated expansion
by directly imposing conditions on x and/or d, for example that they only consist of a few
discrete sines and cosines.

Let

Pf,r =
(

1 cos
(
π(t−5)

10

)
sin
(
π(t−5)

10

)
cos
(

2π(t−5)
10

)
sin
(

2π(t−5)
10

)
. . .
)
∈ Rnx×r

(3.33)

which is used to compute af,r = Pf,rx, the r term sine and cosine approximation of x. We can
return the basis of x as x ≈ xf,r = P Tf,raf,r.

Let r = 20. The “best” approximation of xt that can found using this reduced basis is
xf,20,t = P Tf,20af,20,t = P Tf,20Pf,20xt. This is shown in Figure 3.7. Note that by expressing
x in the reduced basis, the nonsmooth terms that seemed to lead to unreliable estimates are
removed. The effective resolution has also been reduced.

The inverse problem is to estimate af,20,t from data d. This effectively substitutes A ∈
Rnd×nx with Ãf,20 = APf,20 ∈ Rnd×20, reinforcing the similarity with regularisation by
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Figure 3.5: 30 term tSVD estimate
x†30 = A†30dt alongside xt

Figure 3.6: 30 term tSVD estimate model
predictions Ax†30 = AA†30dt alongside dt

Figure 3.7: The 20 term sine/cosine expansion xf,20 of xt alongside xt

discretisation. We can perform an analogue to regularisation by measurement truncation by
imposing similar conditions on d.

Figure 3.8 shows the pseudoinverse estimate found by taking a 20 term sine and cosine
expansion of x, found as x†f,20 = Ã†f,20d = (APf,20)†d. The estimate performs fairly well
and is worst near the boundary. This is because we have assumed x to be zero outside the
domain when this expansion was constructed. This results in x†f,20 “overcompensating” near
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Figure 3.8: The 20 term sine/cosine basis
pseudoinverse estimate x†f,20 = Ã†f,20dt

alongside xt

Figure 3.9: The x†f,20 estimate predictions

Ax†f,20 alongside the data dt

the boundary in order to have d ≈ Ax†f,20. We wanted to illustrate this is a potential pitfall of
the method. This effect can be mitigated by adjusting the basis. Different types of expansions
are discussed in [49].

3.3 Truncated Iterative Methods

Recall that least squares estimates xls ∈ Xls of the ground truth xt satisfy

xls = min
x
{‖A(x)− d‖2} (3.34)

where A is the forward operator and d is the data. Suppose we find the minimum with an
iterative method i.e. construct a sequence xj such that

‖A(xj)− d‖2 ≤ ‖A(xk)− d‖2 (3.35)

for j > k. However, it may be found that iterate r, that is xr, is a better estimate of xt i.e.

‖xr − xt‖2 ≤ ‖xj − xt‖2 (3.36)

for j 6= r. Truncating the iterative method at the r’th step in order to obtain better estimates of
xt is called regularisation by truncated iterations.

Consider the deconvolution problem of Section 2.3.2. The minimisation minx ||A(x)−d||2
is performed by Landweber iterations [57] as

xj+1 = xj + β(ATd−ATAxj) (3.37)
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where β ∈ R is sometimes called the stepsize. It should be noted that the Landweber method
for ill-posed A(x) = d semi-converges, approaching a regularised solution in early iterates
before becoming unstable [58, 59, 60].

Figure 3.10: The 100’th iterate x5 Figure 3.11: The 10,000’th iterate x20

For this problem a relatively small stepsize and relatively large number of iterates are used
to demonstrate the method, whereas typically a stopping criteria and adaptive stepsize would
be used [60]. The 100’th iterate x100 is shown in Figure 3.10 alongside the ground truth xt.
The 10,000’th iterate x10,000 is shown in Figure 3.11 alongside the ground truth xt. In this
case, the truncated iterate estimate is closer to the ground truth.

3.4 Tikhonov Regularisation

The final regularisation method we will discuss is Tikhonov Regularisation [41, 61]. Our analy-
sis largely follows [4]. Recall that the least squares problem, finding xls = minx{‖A(x)− d‖22}
is potentially neither unique or stable. Consider instead the Tikhonov regularised problem, find-
ing

xtik = min
x
{||A(x)− d||22 + α||x||22} (3.38)

where xtik is the Tikhonov estimate of xt, α > 0 is the regularisation parameter, and ‖x‖22
is the regularisation functional. The addition of the regularisation functional will work to
counteract the overly large solutions we found by least squares, for example in Figure 2.20
from the deconvolution problem of Chapter 2.
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Figure 3.12: Comparing Tikhonov to Least Squares in R2

Consider estimating xt in the equation Axt = y with nx = ny = 2, and A has rank
1. The elements of the nullspace of A form a line in R2, and the elements xls of Xls =
minx{‖Ax− y‖2} form a parallel line. The element ofXls nearest the origin is x† = A†y. The
elements of the range of A form a line in R2 through the origin and x†. The Tikhonov solution
xtik = minx{‖Ax− y‖22 + α ‖x‖22} lies somewhere between the origin and x†, depending on
the value of α. This is shown graphically in Figure 3.12.

The Tikhonov estimate for linear inverse problems can be rewritten as

xtik = min
x

{∥∥∥Âx− d̂∥∥∥2

2

}
(3.39)

= Â†d̂ (3.40)

where Â =

(
A√
αInx

)
∈ R(nd+nx)×nx and d̂ =

(
d

0nx,1

)
∈ Rnd+nx . Note that Â is full rank,

so the Tikhonov solution is unique. This reformulation allows us to use the same numerical
methods to find xtik as xls.

Let us now consider Tikhonov regularisation in terms of the SVD. We can rewrite the
Tikhonov estimate similarly to the normal equations of least squares as

(ATA+ αI)xtik,α = ATd (3.41)

xtik,α = (ATA+ αI)−1ATd (3.42)

where the additional subscript in xtik,α is to highlight that this is a particular solution obtained
for a specific α. Note that the matrix ATA + αI will have eigenvalues λk ≥ α > 0 for all k,
implying that

∥∥(ATA+ αI)−1
∥∥

2
≤ 1

α , controlling the norm of the estimates xtik.
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Let A = UDV T be the SVD of A. This can be expressed as A =
∑r

j=1 djujv
T
j . The

Tikhonov estimate can be written as

xtik,α =

r∑
j=1

dj
d2
j + α

(dTuj)vj +

min{nx,nd}∑
j=r+1

1

α
(dTuj)vj (3.43)

where we note that (dTuk) ∈ R.
We now define the filter factors qj ∈ R of different regularisation methods. We express

estimates xreg of xt as

xreg =

min{nx,ny}∑
j=1

qj(d
Tuj)vj (3.44)

to highlight the differences in the estimation schemes. The pseudoinverse estimate x† = A†d
has qj = 1

dj
for j ≤ rt and qj = 0 for j > rt. The r term tSVD estimate x†r has qj = 1

dj
for

j ≤ r and qj = 0 for j > r. The Tikhonov estimate xtik has qj =
dj

d2
j+α

2 for j ≤ rt and qj = 1
α

for j > rt. Note that xtik is composed of min{nx, nd} components of the SVD of A, while x†

and x†r only make use of the first rt < min{nx, nd} and r ≤ rt ≤ min{nx, nd} components
respectively.

There remains the question as to how the regularisation parameter α should be chosen. We
present 2 commonly used methods.

3.4.1 Morozov Discrepancy Principle

Let

d = Axt + et (3.45)

where d ∈ Rnd is measured data,A ∈ Rnd×nx is the linear finite dimensional forward operator,
xt is the ground truth and et is the “true” noise. The Tikhonov estimate to xt is

xtik,α = min
x
{‖Ax− d‖22 + α ‖x‖22}. (3.46)

for a particular choice of α ∈ R.
The core theory behind the Morozov discrepancy principle is that the solution should not

have residual ζ(α) = ‖Axtik,α − d‖2 less that the noise level σ = ||et||2. Note that this method
requires knowledge of σ, and that σ 6= σe, the standard deviation of white noise e. σ can be
estimated from e.g. measurements on known xt = 0nx,1.

A notable drawback of estimating α by the Morozov discrepancy principle is that multiple
inversions need to be performed, each with different values of α, in order to evaluate ζ(α) =
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Figure 3.13: Evaluating the residual ζ(α) = ‖Axtik,α − d‖2 for a range of α’s against σ =
‖et‖2.

‖Axtik,α − d‖2. This is a problem in situations where inversions are required rapidly. Typically
a value of α is obtained for a few test cases, and then fixed for subsequent inversions.

I performed Tikhonov regularisation on the deconvolution example of Section 2.3.2 using
the Morozov discrepancy principle to pick α. I first evaluate xtik,α = minx{‖Ax− d‖22 +
α ‖x‖22} for a range of α’s, and then choose α such that ζ(α) = ‖Axtik,α − d‖2 ≈ σ. This is
shown graphically in Figure 3.13. By Morozov discrepancy, α ≈ 0.1 for this problem.

The Tikhonov estimate found with the Morozov discrepancy principle xtik,0.1 and the
ground truth xt are shown in Figure 3.14. The estimate fits quite well, if slightly “overly
smooth”. Given the nature of the forward operator and the data, it would be optimisitc to ex-
pect a better estimate. The predictions Axtik,0.1 are plotted along with the data in Figure 3.15.
Compare the difference between Axtik,0.1 and d with the difference between y and d in Figure
2.19. The size of the deviations appear comparable, reflecting that the Tikhonov solution with
Morozov fits data d up to σ, and the data is within around σ of y.

Note that the estimate xtik,0.1 seems to stay closer to 0 than xt. This is a result of ‖x‖2 being
penalised in the construction of xtik,0.1. This effect could be mitigated by using a different
penalty term. We discuss a different interpretation of penalty terms in Chapter 4 and present
some different types of penalty term in Chapter 5.

3.4.2 L-Curve Criterion

Suppose we compute ‖Axtik,α − d‖2 and ‖xtik,α‖2 for a range of α’s. If we were to plot
log(‖Axtik,α − d‖2) against log(‖xtik,α‖2) for a range of α’s, we typically see an “L” shaped
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Figure 3.14: The Tikhonov estimate xtik,0.1

found using Morozov discrepancy principle
alongside xt

Figure 3.15: The Tikhonov Morozov estimate
model predictions Axtik,0.1 alongside data dt

curve. The L-Curve Criterion is to take α slightly right of the bend in the “L” [2, 4]. Note that
this reflects a balance between the norm of the solution and the residual, the two terms of the
regularisation functional.

Figure 3.16: Evaluating the residual and norm of xtik,α for a range of α’s to find the “L”.

We compute an L-Curve plot for the deconvolution example of Section 2.3.2. The plot is
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shown in Figure 3.16. The value of α corresponding to the red x on the curve was found to be
around α ≈ 0.01. Note that this is much smaller than the value found by the Morozov criterion,
αmorozov ≈ 0.1.

Figure 3.17: The Tikhonov estimate xtik,0.01

found using L-curve criterion alongside xt
Figure 3.18: The Tikhonov L-curve estimate

predictions Axtik,0.01 alongside data dt

The Tikhonov estimate found using the L-curve criterion xtik,0.01 is shown in Figure 3.17.
Note that the nonsmooth terms in xtik,0.01 are overly large. These terms were lacking in the
Morozov estimate xtik,0.1 shown in Figure 3.14, although the Morozov estimate appears better
overall. The L-curve estimate appears more like the pseudoinverse estimate x†, unsurprising as
in the limiting α = 0 case xtik,0 = x†. The model predictions Axtik,0.01 are plotted alongside
the data in Figure 3.18.

Compare the Morozov estimate xtik,0.1 of Figure 3.14, the L-curve estimate xtik,0.01 of
Figure 3.17, and the minimum norm least squares/pseudoinverse estimate x† of Figure 2.20,
and the corresponding predictions shown in Figures 3.15 3.18 and 2.21. Observe that the
respective estimates of xt are worse, while the predictions fit the data better.

The estimate obtained using Morozov’s discrepancy principle gives a larger value of α and
an apparently better estimate than the L-curve criterion in this particular problem. It should be
stressed that neither of these results are guaranteed. There is however an argument to be made
as to why the Morozov solution should be expected to be “better”. Recall that the Morozov
principle incorporates the additional information σ = ||e||2. The Morozov estimate makes
use of additional information, so could be expected to perform better, although this is not
guaranteed.
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3.4.3 Generalised Tikhonov Regularisation

Recall that we stated the Tikhonov regularised solution as

xtik = min
x
{‖A(x)− d‖22 + α ‖x‖22} (3.47)

where α is the regularisation parameter and ‖x‖22 is the regularisation functional. A natural
extension is the generalised Tikhonov solution, formed as

xgtik = min
x

{
B1

(
A(x)− d

)
+ αB2

(
x
)}

(3.48)

where B1 and B2 are functionals. The choices of each depends on both the forward problem A
and the features we predict xt will possess. We reinterpret this formulation in Chapter 4, and
then give some examples of B1 and B2 in Chapter 5.

This concludes the discussion of regularisation in this thesis. The next Chapter reformulates
inverse problems in terms of Bayesian inference. The Bayesian framework is then used to
re-examine regularisation methods. These discussions will be referred to throughout the rest
of this thesis, particularly in Chapter 6 where concepts of regularisation are utilised for the
development of new methods.
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Chapter 4

Bayesian Inversion

Another approach to inverse problems is to view them as Bayesian inference. Rather than
saying data d implies a particular solution x, we instead consider the probability distribution of
x given the data d. The “solution” in this framework is the posterior distribution π(x|d).

We will largely follow the derivation and analysis of [4]. Derivations can also be found in
[62, 63] for alternative viewpoints.

The Bayesian framework allows for intuitive analysis of regularisation methods. Explicit
understanding of the assumptions in regularisation will be used throughout this thesis for the
development and justification of new methods. Of particular note is the reinterpretation of the
penalty functionals in generalised Tikhonov inversion as related to likelihood and prior prob-
ability distributions. This interpretation allows reasonable estimates of the penalty terms to be
constructed without using computationally expensive techniques such as the Morozov discrep-
ancy principle and the L-curve criterion. Another advantage of the Bayesian interpretation is it
gives a natural way to quantify uncertainty in the inversion.

We now outline the derivation of the posterior distribution.

4.1 Construction of the Bayesian Solution

We wish to find the probability distribution πx|d(x|d), the conditional distribution of the un-
knowns of interest x given the measured data d. In the Bayesian setting, this distribution,
known as the posterior, is considered the “solution” of our inverse problem. In this thesis
π(x|d) can be assumed to be the posterior distribution unless explicitly stated.

Consider the additive noise model

d = A(x) + e (4.1)

with d the measured data, x the unknown of interest, A the forward model and e some additive
noise. We define the prior probability distribution πx(x) on x. We also define a distribution

53
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πe(e) on e. In this thesis, πx(x) = π(x) and πe(e) = π(e) unless explicitly stated. The prior
probability distribution will often be referred to simply as the prior.

Consider the joint probability distribution of x and d

πx,d(x, d) (4.2)

where the marginal probability distribution of x given d defined as

πx(x) =

∫
Rnd

πx,d(x, d)d(d) (4.3)

is the prior. Apologies for the awkward integration with respect to d(d).
Suppose x is known, with x = xt. The conditional distribution of d given x = xt is

πd|x(d|xt) =
πx,d(xt, d)

πx(xt)
(4.4)

for πx(xt) 6= 0. The distribution πd|x(d|x) is called the likelihood.
Suppose d is known, with d = dt. The conditional distribution of x given d = dt, the

posterior, is

πx|d(x|dt) =
πx,dt(x, dt)

πd(dt)
(4.5)

for πd(dt) =
∫
Rnx πx,d(x, dt)dx 6= 0.

Consider the joint distribution

πd,x,e(d, x, e) = πd,e|x(d, e|x)πx(x) = πd|x,e(d|x, e)πe|x(e|x)πx(x) (4.6)

where the equivalences can be derived in a similar fashion to the above. Note that

πd|x,e(d|x, e) = δ(d−A(x)− e) (4.7)

as d = A(x) + e. We can then marginalise πd,e|x(d, e|x) over e as

πd|x(d|x) =

∫
Rnd

πd,e|x(d, e|x)de

=

∫
Rnd

πd|x,e(d|x, e)πe|x(e|x)de

=

∫
Rnd

δ(d−A(x)− e)πe|x(e|x)de

= πe|x(d−A(x)|x)

(4.8)
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where we use the identity of 4.6. Equation (4.8) expresses the likelihood in terms of the condi-
tional distribution of the noise.

Bayes theorem [64] states that

πx|d(x|dt) =
πd|x(dt|x)πx(x)

πd(dt)
(4.9)

however we observe that πd(dt) is a constant and use the result of 4.8 to write

πx|d(x|dt) ∝ πe|x(dt −A(x)|x)πx(x) (4.10)

so the posterior is proportional to the product of the prior and the likelihood.
If we assume π(x, e) = π(x)π(e) i.e. x and e are mutually independent, then πe|x = πe

which simplifies the posterior to

πx|d(x|dt) ∝ πe(dt −A(x))πx(x) (4.11)

i.e. the likelihood is in terms of the noise distribution only.
Let x and e be normally distributed. We denote this as πx(x) ∼ N (µx,Γx) and πe(e) ∼

N (µe,Γe) with µ the mean and Γ the covariance. The normal distribution, also known as the
Gaussian distribution, can be written as

N (µx,Γx) =
(
(2π)nx |Γx|

)−1
2 exp

(
1

2
(x− µx)TΓ−1

x (x− µx)

)
(4.12)

=
(
(2π)nx |Γx|

)−1
2 exp

(
1

2

∥∥∥L̃x(x− µx)
∥∥∥2

2

)
(4.13)

where |Γx| is the trace of Γx and L̃Tx L̃x = Γ−1
x . Note that this assumes |Γx| 6= 0 and Γ−1

x

exists.
The posterior can be expressed as

πx|d(x|d) ∝ πe(d−A(x))πx(x) (4.14)

= exp
(
−1

2

(
||L̃e(d−A(x)− µe)||22 + ||L̃x(x− µx)||22

))
(4.15)

=

(
−1

2
(V (x))

)
(4.16)

with L̃Te L̃e = Γ−1
e , L̃Tx L̃x = Γ−1

x and V (x) = ||L̃e(d − A(x) − µe)||22 + ||L̃x(x − µx)||22,
sometimes referred to as the potential. Note that this assumes Γx and Γe are invertible.

The above is an expression for the entire distribution πx|d(x|d). This can be used to define
specific point estimates of xt given dt = Axt + et.The conditional mean (CM) is a common
point estimate, defined as

xCM = µx|dt = E(x|d = dt) =

∫
Rnx

xπx|d(x|dt)dx (4.17)
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where E is the expectation operator. Another common point estimate is the Maximum a Poste-
riori (MAP) estimate, defined as

xMAP = max
x
{πx|d(x|dt)} (4.18)

i.e. the x at the “most likely”/“highest point” of the posterior. For normally distributed x and e
the MAP can be expressed as

xMAP = min
x
{V (x)} = min

x

{
||L̃e(dt −A(x)− µe)||22 + ||L̃x(x− µx)||22

}
(4.19)

which shares obvious similarities with the Tikhonov estimate. In fact, the Tikhonov estimate

xtik = min
x

{
||dt −A(x)||22 + α||x||22

}
(4.20)

is equivalent to the MAP with µx = 0nx,1, µe = 0nd,1, Γe = σ2
eInd and Γx = σ2

xInx where
σe, σx ∈ R. Therefore, α = σ2

e
σ2
x

. This observation allows us to arrive at an intuitively un-
derstandable value for α, as we often have crude estimates of the variances σ2

e and σ2
x before

attempting reconstructions. This concept will be elaborated on further when discussing prior
models in Chapter 5.

This equivalence between the MAP and Tikhonov estimates is sometimes used as an argu-
ment for using the MAP over the CM as Tikhonov estimates are already widely used [2, 3, 41].
In the case of linear problems with normally distributed x and e, the MAP and CM coincide.
An example of the MAP and CM not coinciding is shown in Figure 4.1. This is an example of
a case where the MAP might be a more meaningful point estimate than the CM.

The MAP estimate for normally distributed x and e is from data dt = Axt + et is

xMAP = min
x
{||L̃e(dt −Ax− µe)||22 + ||L̃x(x− µx)||22} (4.21)

= min
x

{∥∥∥∥(L̃eAL̃x
)
x−

(
L̃e(dt − µe)

L̃xµx

)∥∥∥∥2

2

}
(4.22)

=

(
L̃eA

L̃x

)†(
L̃e(dt − µe)

L̃xµx

)
(4.23)

= Â†d̂t (4.24)

similarly to the Tikhonov estimate. Note that Null(Â) = Null(A) ∩ Null(L̃x), so if Γx is full
rank, the problem d̂ = Âx is exactly and uniquely solvable for x.
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Figure 4.1: Comparing the Conditional Mean with the Maximum a Posteriori point approxi-
mations of a probability distribution

4.1.1 A More Generalised Posterior

Recall that, assuming additive noise, the posterior can be written as

πx|d(x|dt) ∝ πe|x(dt −A(x)|x)πx(x). (4.25)

The earlier derivation assumed e and x to be mutually independent and normally distributed.
Instead, let x and e be mutually dependant but πe|x is normal i.e.

πe|x(dt −A(x)|x) ∼ N (µe|x,Γe|x) (4.26)

with µe|x the conditional mean of e given x, and Γe|x the conditional covariance of e given x.
Let π(x) belong to the family of exponential priors, defined as

π(x) ∝ exp
(
−1

2
G(x)

)
(4.27)

of which normal distributions are a member.
The posterior distribution in the above more general case is

πx|d(x|d) ∝ exp
(
−1

2

(∥∥∥L̃e|x(d−A(x)− µe|x
)∥∥∥2

2
+G(x)

))
(4.28)

with potential

V (x) =
∥∥∥L̃e|x(d−A(x)− µe|x

)∥∥∥2

2
+G(x). (4.29)
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This more general form of the posterior will be used repeatedly in this thesis. Note again the
similarities between the MAP estimate xMAP = min{V (x)} and the generalised Tikhonov
estimate.

4.2 Regularisation Methods in the Bayesian Framework

Often a hard line is drawn between regularisation and the Bayesian approach to inverse prob-
lems. However, many regularisation methods can be interpreted in the Bayesian setting. These
considerations will be useful later as we develop hybrid approaches in Chapters 6 and 7.

4.2.1 Least Squares

Consider the finite dimensional additive noise model

d = Ax+ e (4.30)

with a specific realisation

dt = Axt + et (4.31)

where we wish to estimate xt from dt.
Consider the least squares estimate

xls = min
x

{
‖Ax− dt‖22

}
(4.32)

which we note is not necessarily unique. The MAP estimate assuming mutually independent
normally distributed x and e is

xMAP = min
x

{∥∥∥L̃e(d−Ax− µe)∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
. (4.33)

Note that the MAP and LS estimates are equivalent if L̃e ∝ Ind , µe = 0nd,1 and L̃x =
0nx,nx . In other words, the least squares estimate assumes e to be zero mean white noise. The
least squares estimate also assumes Γ−1

x = 0nx,nx i.e. no prior information about x. Another
interpretation is that least squares is a maximum likelihood estimate, as we are only finding the
maximum of the likelihood πd|x(dt|x) = πe(dt − Ax). Both interpretations give insight into
when standard least squares may be valid.

Recall that the least squares estimate is not necessarily unique. Consider the minimum
norm least squares/pseudoinverse estimate x† = A†dt found using the pseudoinverse. Recall
that we expand A using the singular value decomposition as A =

∑rt
j=1 djujv

T
j where rt is

the rank of A. We construct the pseudoinverse as A† =
∑rt

j=1
1
dj
vju

T
j . For further analysis,
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we will also consider the matrix Vnull = (vrt+1, vrt+2, . . . , vnx), the matrix of right singular
vectors spanning the nullspace of A. We use this to construct Pnull = VnullV

T
null, the projection

matrix to the nullspace of A.
The minimum norm least squares estimate can be written as

x† = A†dt (4.34)

= min
xls

{
‖xls‖22

}
where xls = min

x

{
‖Ax− dt‖22

}
(4.35)

= min
x

{
‖Ax− dt‖22

}
such that Pnullx = 0nx,1 (4.36)

Now consider the MAP estimate

xMAP = min
x

{
‖Ax− dt‖22 + ‖αPnullx‖22

}
(4.37)

i.e. we have chosen Γ−1
x = α2P TnullPnull. Note that

lim
α→∞

xMAP = lim
α→∞

min
x

{
‖Ax− dt‖22 + ‖αPnullx‖22

}
(4.38)

= min
x
{‖Ax− dt‖} such that Pnullx = 0nx,1 (4.39)

= x† (4.40)

that is, we can express the pseudoinverse estimate as a limiting case of the MAP in the Bayesian
framework. This is an analytically useful trick that will be used throughout this review of
regularisation methods in the Bayesian framework, allowing a more explicit formulation of
the assumptions being made. Here we see that the pseudoinverse estimate assumes that x has
exactly zero component in the nullspace of A.

4.2.2 Regularisation by Discretisation

Recall that a method of regularising an equation of the form d = Āx̄ + e is to simply reduce
the dimension of x̄ i.e. we go from x̄ ∈ Rnx̄ to x = Px,x̄x̄ ∈ Rnx with nx < nx̄ where Px,x̄
projects from x̄ to x.

Consider the “fine discretisation” least squares problem

x̄ls = min
x̄

{∥∥Āx̄− dt∥∥2

2

}
(4.41)

and compare with the MAP estimate

x̄MAP = min
x̄

{∥∥Āx̄− dt∥∥2

2
+ ‖α(x̄− Px,x̄x̄)‖22

}
(4.42)

= min
x̄

{∥∥Āx̄− dt∥∥2

2
+ ‖α(I − Px,x̄)x̄‖22

}
(4.43)
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where our prior on x̄ is normal with Γ−1
x̄ = α2(I − Px,x̄)T (I − Px,x̄). Consider the limit

lim
α→∞

min
x̄

{∥∥Āx̄− dt∥∥2

2
+ ‖αPx,x̄x̄‖22

}
= min

x̄

{
‖Ax− dt‖22

}
(4.44)

i.e. regularisation by discretisation is equivalent to using a prior/penalty term that assigns zero
probability to solutions not in the basis of x. This interpretation is important to keep in mind
when considering how to discretise a problem.

4.2.3 Regularisation by Measurement Truncation

If the original model was d̄ = Ax + ē, then the truncated measurement model can be written
as d = Pd,d̄d̄ = Pd,d̄(Ax+ ē). The problem is now to find

min
x

{∥∥Pd,d̄(Ax− d̄)
∥∥2

2

}
(4.45)

so in the Bayesian setting we keep Γ−1
x = 0nx,nx as in least squares, but now we also have

Γ−1
e = P T

d,d̄
Pd,d̄. This is equivalent to saying that for the elements of d̄ projected to d, the

measurement noise, and in turn the measurements themselves due to the marginalisation, are
perfectly correlated.

4.2.4 Truncated Series Expansion

As mentioned in Section 3.2 a wide variety of expansions exist. We will only discuss the tSVD
for the linear finite dimensional additive noise model d = Ax + e. We replace A = UDV T

with Ar = UrDrV
T
r , the optimal (w.r.t. the 2-norm) rank r approximation to A. The true rank

of A is rt, and r ≤ rt. The tSVD estimate is

xtSVD = min
x
{‖Arx− dt‖} (4.46)

= A†rdt = VrD
−1
r UTr d (4.47)

i.e. the pseudoinverse estimate but using Ar instead of A. The rest of the analysis is similar to
the analysis of the pseudoinverse estimate in Section 4.2.1.

4.2.5 Truncated Iterative Methods

Suppose we regularise our estimates by only taking r steps of an iterative method. Let Xr be
the set of all x that can be reached by step r of the method of choice. For example, suppose the
method is Landweber iterations and r = 1. For this case,

X1 =
{
x : x = x0 + β(ATd−ATAx0)

}
(4.48)



4.2. REGULARISATION METHODS IN THE BAYESIAN FRAMEWORK 61

where x0 is some initial estimate e.g. x0 = µx. If β is small, X1 is a small subset of Rnx .
Let PXr,x be the projection matrix from x to Xr. Consider the MAP estimate

xMAP = min
x

{
‖Ax− dt‖22 + ‖αPXr,xx‖

2
2

}
(4.49)

i.e. we have chosen Γ−1
x = α2P TXr,xPXr,x. The MAP estimate above will be equivalent to the

truncated iteration estimate in the limit α→∞.
Restricting the solution space to Xr has parallels to Krylov subspace methods [32]. There

are also parallels to the sample based methods of [37]. The underlying idea is that repeated
evaluations of matrix vector products reveals the dominant components (e.g. SVD) of a matrix.
This concept will be considered further in Chapter 6.

4.2.6 Tikhonov Regularisation

We have already discussed the similarity between the Bayesian MAP estimate

xMAP = min
x
{
∥∥∥L̃e(dt −A(x)− µe)

∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2
} (4.50)

and the standard Tikhonov estimate

xtik = min
x
{‖dt −A(x)‖22 + α ‖x‖22} (4.51)

which is equivalent to the Bayesian MAP with µx = 0nx,1, µe = 0nd,1, Γe = σ2
eI and

Γx = σ2
xI corresponding to α = σ2

e
σ2
x

. The Bayesian interpretation allows us to choose a value
of α without resorting to computationally expensive methods such as the Morozov discrepancy
principle and the L-curve criterion. Estimates of σe and σx can often be reached through
considerations of the problem at hand.

Consider the 1D deconvolution example of Section 2.3.2. We know the standard deviation
of the noise to be σe = 0.1. We also now the ground truth in this example. We estimate σx ≈
1.3. We would then say the “Bayesian” value of αwould be around 0.12

1.32 ≈ 0.006. The estimate
found with this value of α is shown in Figure 4.2. This choice of α is too small, resulting in an
estimate with overly large nonsmooth terms, similar to the L-curve fit of α = 0.01. This choice
of α = 0.0006 would however be a good starting point if we were then to implement Morozov
discrepancy principle or L-curve criterion, potentially reducing the computational cost.

The Bayesian estimate of α = 0.0006 results in a worse estimate of xt in this problem than
the Morozov (α = 0.1) and L-curve (α = 0.01) estimates. We can explain this result from the
Bayesian perspective. These estimates assume x is normally distributed with Γx = σ2

xI i.e.
we assumed that x has no correlation structure. When we look at x however this assumption
is clearly false. The smooth variation indicates a distinct correlation structure. The estimation
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Figure 4.2: Estimate xtik,0.0006 where α = 0.0006 comes from Bayesian considerations,
alonside ground truth xt

is bad because our prior model is bad. The Morozov and L-curve estimates perform better, but
that is because these estimates better account for the flawed prior model.

This gives some practical insight into applying Bayesian methods in practice. Ideas such
as Morozov discrepancy principle and L-curve criterion could be used to correct inaccurate
priors. This is a concept that will be explored in Section 5.1.2.

4.2.7 Exponential Priors and Generalised Tikhonov Regularisation

Recall that πx|d(x|dt) ∝ πd|x(dt|x)πx(x) = πe|x(dt − A(x, e)|x)πx(x). In the case that x
and e are mutually independent, we can write πx|d(x|dt) ∝ πe(dt − A(x, e))π(x). A useful
structure to impose is that π(e) and π(x) belong to the family of exponential priors i.e. π(e) ∝
exp (Ge(e)) and π(x) ∝ exp (Gx(x)). Having probability densities in this form allows us to
write

πx|d(x|dt) ∝ exp (Ge (dt −A(x, e)) +Gx(x)) (4.52)

which allows us to write the MAP as

xMAP = min
x
{Ge (dt −A(x, e)) +Gx(x)} (4.53)

as in generalised Tikhonov regularisation. In the case that π(e) ∼ N (µe,Γe = (L̃Te L̃e)
−1),

Ge(e) =
∥∥∥L̃e(e− µe)∥∥∥2

2
.
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Performing Bayesian inversions successfully is clearly reliant on not just our model A of
the physical system, but also the prior model on x. We will consider some useful prior models
in Chapter 5. Before that we provide another benefit of the Bayesian framework, namely the
natural extension to uncertainty quantification.

4.3 Uncertainty Quantification

We have stated that the Bayesian “solution” to an inverse problem is the posterior density
πx|d(x|d). The MAP was then presented as an estimate of xt. Various regularisation methods
were then reinterpreted in terms of the posterior and the MAP.

The point estimate however is not representative of the “entire solution” π(x|d). We can
provide a more meaningful representation by including some kind of spread estimate. That
is, we want to quantify our uncertainty of x. Quantifying uncertainty is called uncertainty
quantification, and is discussed in [49]. While point estimates are useful, a potentailly more
useful statement might be “with probability p, x is in this region” [65].

We denote the region x lies in with probability p given data d = dt as Ωp,x|d. We can define
the region as the solution to

p =

∫
Ωp,x|d

π(x|d)dx (4.54)

with the condition that π(x|d) > p∗ for all x ∈ Ωp,x|d to make this region unique. Finding
Ωp,x|d is potentially computationally demanding. Suppose we evaluated the integral using m
point quadrature in each dimension of x. Then the computation would requiremnx evaluations
of π(x|d) which at the very least would require mnx evaluations of A. This integration would
then need to be performed multiple times over different regions in an attempt to find Ωp,x|d. For
particular distributions, more computationally feasible methods exist. This section will outline
some commonly used simplified approaches to uncertainty quantification.

4.3.1 Linear Model Normal Unknowns

Consider the posterior πx|d(x|dt) in the case that dt = Axt + et with x ∼ N (µx,Γx) and
e ∼ N (µe,Γe). In this case, the posterior is

πx|d(x|dt) ∝ exp
(
−1

2

(∥∥∥L̃e(dt −Ax− µe)∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

))
(4.55)

which is a normal distribution. More specifically, it is a normal distribution with MAP

xMAP =

(
L̃eA

L̃x

)†(
L̃e(d− µe)
L̃xµx

)
(4.56)
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which we know to be equal to the CM. In the case that x and e are mutually independent

xCM = µx|d=dt = µx + ΓxdΓ
−1
d (dt − µd) (4.57)

= µx + ΓxA
T
(
AΓxA

T + Γe
)−1

(dt −Aµx − µe) (4.58)

and conditional covariance

Γx|d = Γx − ΓxdΓ
−1
d Γdx (4.59)

= Γx − ΓxA
T
(
AΓxA

T + Γe
)−1

AΓx (4.60)

=
(
Γ−1
x +ATΓ−1

e A
)−1

(4.61)

where the equivalence between 4.60 and 4.61 comes from an application of the matrix inversion
lemma/Sherman-Morrison-Woodbury formula. Derivation of these results are readily available
in the literature, for example [3, 4, 65, 66].

Note that in this case the posterior distribution can be characterised completely with linear
algebra. The rigorous uncertainty quantification would be to now find Ωp,x|d, the set of all x
such that the posterior is always above some value and that the posterior integrates over to give
p. The construction of this “trust region” can be found in [67] as∥∥∥L̃x|d(x− µx|d)∥∥∥2

2
≤ χ2

nx(p) (4.62)

where L̃Tx|dL̃x|d = Γ−1
x|d and χ2

nx(p) is the probability p chi squared quantile function for nx
degrees of freedom.

The above region is difficult to interpret and display. In this thesis, the typical quantification
of uncertainty is the posterior error interval. We define

σ̂x|d = diag(Γx|d) (4.63)

and define the kσ̂ posterior error interval to be xMAP ± kσ̂x|d. In the case that πx|d is a normal
distribution and Γx|d is a diagonal matrix, approximately 66% of xt will be in the k = 2
interval, and 99% in the k = 3 interval. While this uncertainty estimate is crude, it is simple to
compute and interpret.

4.3.2 Nonlinear Model Normal Unknowns

Consider the posterior πx|d(x|dt) in the case that dt = A(xt) + et with x ∼ N (µx,Γx) and
e ∼ N (µe,Γe). Note that A(x) is not a linear mapping of x. In this case, the posterior is

π(x|d) ∝ exp
(
−1

2

(∥∥∥L̃e(dt −A(x)− µe)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

))
(4.64)
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and the MAP and CM can not be computed just by linear algebra, in contrast to the linear case.
The MAP is expressed as the solution to the optimisation problem

xMAP = min
x

{∥∥∥L̃e(dt −A(x)− µe)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(4.65)

= min
x

{(
L̃eA(x)

L̃xx

)
−
(
L̃e(d− µe)
L̃xµx

)}
(4.66)

= min
x

{
Â(x)− d̂

}
(4.67)

where we redefine Â and d̂ for the nonlinear case in this section. The optimisation can be solved
by e.g. a line search method such as the Gauss-Newton algorithm. Line search algorithms are
iterative methods of the form

xj+1 = xj + βj~xj (4.68)

where βj ∈ R is the step length and ~xj ∈ Rnd is the search direction. In the Gauss-Newton
algorithm, the search direction is

~xj = J†xj
(
Â(xj)− d̂

)
(4.69)

where Jxj ∈ Rnd×nx is the Jacobian matrix of Â at xj defined as

J(i, k) =
∂d(i)

∂xj(k)
(4.70)

where i and k are indices. A more in depth discussion of line search algorithms can be found
in e.g. [68].

Gaussian distributions can be characterised by just a point (MAP, CM) and a matrix (co-
variance). The posterior distribution for nonlinear problems is not necessarily gaussian, and
typically more than just a vector and a matrix is required to characterise the posterior distribu-
tion. We can however compute a local Gaussian approximation to the posterior, known as the
Laplace approximation. Figure 4.1 is an example where a Gaussian approximation to the true
distribution might be accurate near the MAP.

The Jacobian can be used to form an affine approximation to A around xMAP as

A(x) ≈ BMAP(x) = xMAP + JMAP(x− xMAP) (4.71)

where BMAP(x) is an affine approximation to A and JMAP is the Jacobian of A at xMAP.
BMAP(x) is also the first order Taylor expansion of A at xMAP, as discussed in [48, 68].
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The Laplace approximation [69, 70, 71] to the posterior covariance is

Γ̂x|d = Γx − ΓxJ
T
(
JΓxJ

T + Γe
)−1

JΓx (4.72)

=
(
Γ−1
x + JTΓ−1

e J
)−1

(4.73)

where Γx|d ≈ Γ̂x|d is found by replacing A(x) with B(x). The Laplace approximation is used
in a range of texts, for example [4, 49].

From this, we can perform approximate uncertainty quantification similar to the linear
case. Note that both Gauss-Newton line search and the Laplace approximation make use of the
Jacobian.



Chapter 5

Prior Models

Loosely speaking, the prior encodes information about x before any data d = dt is col-
lected. Suppose we have two realisations of x, xlikely and xunlikely. A prior should be such
that πx(xunlikely) < πx(xlikely). Typically xt is predicted to have particular features e.g. be
“smooth”. A prior is then chosen such that draws of the prior also have these features.

Consider a prior πx(x) on x ∈ Rnx . Let 0 < κ � maxx{πx(x)} be a small number. In
this thesis, if πx(x) > κ in a relatively small region of Rnx , we say the prior is strict or narrow.
πx(x) > κ in a relatively large region of Rnx , we say the prior is loose or wide. The strictest
prior is that x is fixed. This can be thought of as Γx = 0nx,nx . The loosest prior is that all
x ∈ Rnx are equally likely. This can be though of as Γ−1

x = 0nx,nx . Recall that the MAP
estimate with Γ−1

x = 0nx,nx was found to be equivalent to the least squares estimate in Section
4.2.1.

In this thesis, a draw or sample xj ∈ Rnx of random variable x is such that πx(xj) > 0.
Suppose x ∼ U(0, 1) i.e. nx = 1, πx(x) = 1 for 0 < x < 1 and πx(x) = 0 elsewhere. Then
xj = 0.1234 is a sample of x, and a draw from πx(x). Analysing draws is a useful way of
interpreting the features of the prior.

In this thesis, we will typically consider discretised forms of Gaussian processes. This
allows for intuitive construction of finite dimensional covariance matrices and natural com-
putational implementation, although the subtle difference in interpretation can lead to useful
analytic results. More detail can be found in e.g. [4, 73, 92]. This chapter reviews several types
of prior with useful properties.

5.1 Gaussian Priors

A widely used type of prior is Gaussian or normal. A review of Gaussian priors can be found in
[4]. Recall that a normally distributed variable x is denoted as x ∼ πx(x) = N (µx,Γx) where
µx ∈ Rnx is the mean of x and Γx ∈ Rnx×nx is the covariance of x. The normal distribution

67
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is defined to be

N (µx,Γx) =
(
(2π)nx |Γx|

)− 1
2 exp

(
− 1

2
(x− µx)TΓ−1

x (x− µx)

)
(5.1)

∝ exp
(
− 1

2

∥∥∥L̃x(x− µx)
∥∥∥2

2

)
(5.2)

where L̃Tx L̃x = Γ−1
x . Note the use of Γ−1

x .
Let

dt = Axt + et (5.3)

be a realisation of d = Ax+ e where x ∼ N (µx,Γx) and e ∼ N (µe,Γe). The MAP estimate
is

xMAP = min
x

{∥∥∥L̃e (dt −Ax− µe)
∥∥∥2

2
+
∥∥∥L̃x (x− µx)

∥∥∥2

2

}
(5.4)

= min
x

{∥∥∥∥(L̃eAL̃x
)
x−

(
L̃e(dt − µe)

L̃xµx

)∥∥∥∥2

2

}
(5.5)

=

(
L̃eA

L̃x

)†(
L̃e(dt − µe)

L̃xµx

)
(5.6)

i.e. the MAP estimate can be found as the solution to a linear algebra problem. This demon-
strates the computational attractiveness of Gaussian models.

Let wj ∈ Rnx be a draw of white noise w ∼ πw(w) = N (0nx,1, Inx). Let Lx be such that
LxL

T
x = Γx. Then

xj = Lxwj + µx (5.7)

is a draw of x from π(x) = N (µx,Γx). Note that these samples have the correct mean as

E(xj) = E(µx + Lxwj) = µx + LxE(wj) = µx (5.8)

and the covariance is

Covariance(xj) = E
(
(xj − µxj )(xj − µxj )T

)
= E(Lxwjw

T
j L

T
x ) (5.9)

= LxE(wjw
T
j )Lx = LxIndL

T
x = Γx (5.10)

so Equation (5.7) is valid. Note that Equation (5.7) states drawing from a Gaussian distribution
as an affine function of white noise. In other words, if a Gaussian prior is desired with certain
features, it may be more intuitive to consider the affine transformation of white noise that would
produce such features. This concept is considered further in Section 5.1.3
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5.1.1 Gaussian Smoothness Priors

Consider the function x(t) over t ∈ Ω ⊂ Rnt . Let t ∈ Rnx×nt such that t(j, :) ∈ Ω. Let
x(j) = x

(
t(j, :)

)
. We might assume the difference |x(j) − x(k)| to depend on the distance

‖tj − tk‖22. In this case, we might use a so-called (Gaussian) “smoothness” prior. In a Gaussian
smoothness prior, the covariance matrix Γx is such that elements of x are correlated based on
proximity.

In this thesis, we define a smoothness prior covariance as

Γ(j, k) =

(
h

3

)2

exp

(
−‖tj − tk‖22

2l2

)
(5.11)

where h is called the height and l is called the correlation length. We expect a draw xj plotted
over t to have “bumps” of height approximately h and length approximately l. Equation (5.11)
is a covariance function for Gaussian smoothness priors. More specifically, Equation (5.11) is
a modification of the “exponential squared” covariance function [73]. The covariance function
of Equation (5.11) is stationary as it only depends on tj − tk i.e. it is translation invariant. The
covariance function of Equation (5.11) is also isotropic as it only depends on ‖tj − tk‖2 i.e. it
is radially invariant. Examples of nonstationary and anisotropic covariance functions can be
found in Section 5.1.4.

We now construct an example smoothness prior. Let t ∈ R be the spatial variable over
domain Ω = [0, 20] and x(t) be a function on Ω. Let t ∈ Rnx be a finite dimensional approxi-
mation of t on Ω with t(1) = 0, t(nx) = 20 and t(j + 1)− t(j) = ∆t. Let x ∈ Rnx be a finite
dimensional approximation of x with x(t(j)) = x(j). Let nx = 201 i.e. ∆t = 0.1. This is the
same discretisation used for the deconvolution problem first considered in Section 2.3.

Let h = 3 and l = 0.3. The first row of Γx is plotted in Figure 5.1 and the entire matrix is
visualised in Figure 5.2. Note that the matrix is effectively sparse, with only the 10 or so values
near the diagonal being relatively large.

Draws xj of x can be computed as xj = Lxwj where LxLTx = Γx. We shall compute
Lx as the Cholesky decomposition of Γx, where Lx is the Cholesky factor. Discussion of the
Cholesky decomposition and how it is computed can be found in [32]. Note that the Cholesky
decomposition gives a matrix such that LxLTx = Γx, but other matrices L̂x such that L̂xL̂Tx =
Γx do exist [45]. The Cholesky decomposition is used here as it can be computed efficiently.
Note that the Cholesky factor only exists for positive definite matrices. The Cholesky factor
Lx is visualised in Figure 5.3. Note that Lx is upper triangular and effectively sparse.

A draw wj of white noise w ∼ N (0nx,1, Inx) is shown in Figure 5.4. The draw wj was
computed using the random number generator in MATLAB as wj = randn(nx, 1). The corre-
sponding draw xj = Lxwj of x ∼ N (0nx,1,Γx) is shown in Figure 5.5. Comparing Figures
5.4 and 5.5 illustrates why this is called a “smoothness” prior. Note that xj has “bumps” of
width around 0.6 i.e. 2l and height around ±3 i.e. h. This xj is in fact the unconvolved signal
st from Section 2.3.
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Figure 5.1: First row of Γx Figure 5.2: Visualisation of Γx

Figure 5.3: Visualisation of Lx

Consider again the nd = 51 deconvolution problem of Section 2.3.2. In this section, we
treat x = s i.e. x contains values corresponding to t over the entire domain Ω = [0, 20], but
we only show the estimates on Ωx = [5, 15].

This convolution is modelled as d = Ax+ e. The MAP estimate can be expressed as

xMAP = min
x

{∥∥∥L̃e (dt −Ax− µe)
∥∥∥2

2
+
∥∥∥L̃x (x− µx)

∥∥∥2

2

}
(5.12)

=

(
L̃eA

L̃x

)†(
L̃e(d− µe)
L̃xµx

)
(5.13)



5.1. GAUSSIAN PRIORS 71

Figure 5.4: White noise wj Figure 5.5: Draw of πx(x) computed as
xj = Lwj

where L̃Te L̃e = Γ−1
e and L̃Tx L̃x = Γ−1

x . The covariance Γx was constructed as in Equation
(5.11) with h = 3 and l = 0.3 i.e. πx(x) is a Gaussian smoothness prior.

Figure 5.6: Ground truth and MAP estimate Figure 5.7: Model predictions AxMAP and
data dt

The MAP estimate xMAP and ground truth xt are plotted in Figure 5.6. Note that the MAP
seems to be slightly “over smooth”, similar to the Morozov estimate of Section 3.4.1. The
MAP estimate is the product of 1 inversion, whereas the Morozov estimate required multiple
inversions be computed in order to estimate the regularisation parameter α. The predictions
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AxMAP are plotted alongside the data dt in Figure 5.7.
The Bayesian framework can be used to quantify uncertainty in the estimate. This model

d = Ax + e has linear forward map A and normally distributed x and e. The posterior is
therefore a normal distribution with covariance

Γx|d = (Γ−1
x +ATΓ−1

e A)−1. (5.14)

Figure 5.8: Posterior covariance Γx|d Figure 5.9: Ground truth, MAP estimate and
posterior error interval

The posterior covariance matrix is visualised in Figure 5.8. Note that the central block
Γx|d(50 : 150, 50 : 150) corresponds to Ωx. Recall that d(j) = c

(
td(j)

)
and td(j) ∈ Ωx for

this problem. The rest of Γx|d appears similar to Γx from Figure 5.2.
Let diag(Γx|d) = σ̂ ∈ Rnx . This is used to construct the approximate posterior error

interval xMAP±3σ̂ as described in Section 4.3. The posterior error interval is plotted in Figure
5.9, and we do see xt is mostly contained. In this case, the ground truth xt is a sample of the
prior used in the MAP estimation, which is a slightly idealised situation.

5.1.2 Prior Tuning and Hyperpriors

The exponential squared smoothness prior covariance function of Equation (5.11) is defined by
2 parameters, height h and correlation length l. In the above example, ht = 3 and lt = 0.03,
the true values of h and t, were known. Adjusting the parameters in a prior to get the most
representative estimates of xt is called tuning the prior. The parameters of the prior can be
treated as random variables. The probability distribution of the parameters in the prior is known
as the hyperprior.
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Recall that the standard Tikhonov estimate is

xtik = min
x

{
‖dt −Ax‖22 + α ‖x‖22

}
(5.15)

which is the same as the map estimate if Γe ∝ I and Γx ∝ I . For a smoothness prior,
Γx ≈

(
h
3

)2
I when l < ∆t. The Tikhonov estimates of Sections 3.4.1 and 3.4.2 therefore

correspond to estimating l too small.
Let us consider 4 cases. Each will have h and l too small or too large. In this section, l = 0

will be taken to mean l � ∆t, noting that the covariance function of Equation (5.11) is not
defined for l = 0. Case 1 has h = 0.1 and l = 0, and the corresponding estimate xMAP,h=0.1,l=0

of xt is shown in Figure 5.10. The MAP estimate stays near 0, and the posterior error intervals
are far too narrow. This is a consequence of the h = 0.1, l = 0 smoothness prior being too
strict.

Case 2 has h = 10 and l = 0, and the corresponding estimate xMAP,h=10,l=0 of xt is shown
in Figure 5.11. The MAP estimate largely follows the ground truth, although nonsmooth terms
are slightly overamplified in the MAP. This case loosely corresponds to the standard Tikhonov
solution with α slightly too small. Compare this with the Morozov estimate of Section 3.4.1
in which α was slightly too large. While the MAP estimate with h = 10 and l = 0 is fairly
representative, the posterior error intervals are far too wide. This is a result of the h = 10, l = 0
smoothness prior being too loose. While it could be argued that overly wide posterior error
intervals is preferred to overly narrow posterior error intervals, these intervals are practically
worthless.

Case 3 has h = 0.1 and l = 3, and the corresponding estimate xMAP,h=0.1,l=3 of xt is
shown in Figure 5.12. The MAP estimate stays near 0, and the posterior error intervals are far
too narrow.

Case 4 has h = 10 and l = 3, and the corresponding estimate xMAP,h=10,l=3 of xt is shown
in Figure 5.13. The MAP estimate appears overly smooth, and the posterior error intervals are
far too narrow.

Cases 3 and 4 have l = 3, and the MAP estimates are far too smooth. This is a consequence
of the l = 3 smoothness prior promoting very smooth x ∈ Rnx . The corresponding posterior
error intervals are also far too narrow. This is likely because the posterior error intervals are
computed with σ̂ = diag(Γx|d), a diagonal approximation to the posterior. We would expect
the prior and covariance to have large off diagonal components for l = 3, so the diagonal
approximation is probably not accurate.

The prior covariance Γx for case 2, h = 10 and l = 0, is visualised in Figure 5.14. The cor-
responding posterior Γx|d is shown in Figure 5.16. Note that these matrices are approximately
diagonal.

The prior covariance Γx for case 4, h = 10 and l = 3, is visualised in Figure 5.15. The
corresponding posterior Γx|d is shown in Figure 5.17. Note that Γx|d corresponding to the
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Figure 5.10: h = 0.1, l = 0 Figure 5.11: h = 10, l = 0

Figure 5.12: h = 0.1, l = 3 Figure 5.13: h = 10, l = 3

region of interest, Γx|d(50 : 150, 50 : 150), is not diagonal at all. This explains why the 3σ̂
posterior error interval in Figure 5.13 was far too narrow.

Consider a prior controlled by parameters p ∈ Rnp . We denote this as πpx(x). For example,
the above discussion was of a Gaussian smoothness prior with p = (h, l) ∈ R2. In this thesis,
prior tuning refers to the process of picking p such that πpx(xlikely) > πpx(xunlikely).

The hyperprior is the probability distribution πp(p) on p. Let πp(p) ∝ exp(Gp(p)) and
ω = (x, p) ∈ Rnx+np . Let d = A(x)+ewith πx(x) ∝ exp(Gpx(x, p)) and π(e) ∝ exp(Ge(e)).
Note that the function Gpx is a function of p.

In order to estimate xt from dt = A(xt) + et, we form the MAP estimate of ωt = (xt, pt)



5.1. GAUSSIAN PRIORS 75

Figure 5.14: Γx, h = 10, l = 0 Figure 5.15: Γx, h = 10, l = 3

Figure 5.16: Γx|d, h = 10, l = 0 Figure 5.17: Γx|d, h = 10, l = 3

as

ωMAP =

(
xMAP

pMAP

)
= min

ω

{
Ge
(
dt −A(x)

)
+Gpx(x, p) +Gp(p)

}
(5.16)

and then extract xMAP. Note that the optimisation must be performed with respect to x and
p. This is potentially a large increase in computational complexity over just optimising with
respect to x. Suppose the optimisation is performed with an iterative method, and πx(x) is a
Gaussian smoothness prior. At each iteration, a new p is used. This means computing a new
Γx, and then finding a new L̃x such that L̃Tx L̃x = Γ−1

x . So even though only 2 additional
numbers p = (h, l) are being estimated, an additional O(n3

x) flops are used each iteration. A
potential solution to this computational issue is discussed in Section 6.3.
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The remainder of this section will consider adapting concepts from the Morozov discrep-
ancy principle and the L-curve criterion to computing the MAP estimate with a Gaussian
smoothness prior. Consider the generalised Tikhonov problem

xtik = min
x
{Ge(d−A(x, e)) + αGx(x)} . (5.17)

Applying the Morozov discrepancy principle or the L-curve criterion to estimate α in the gener-
alised Tikhonov problem has been considered in e.g. [74, 75, 76, 77]. In the Tikhonov problem,
p = α and Gx,p(x) = pGx(x). I consider the case that Gx,p(x) 6= pGx(x). I suspect the Mo-
rozov discrepancy principle and L-curve criterion have been applied to this case in practice,
although I cannot find explicit discussion in the literature.

Consider the deconvolution problem of Section 2.3.2. We will compute a MAP estimate
of xt using a smoothness prior, as in Section 5.1.1. Let ht = 3 be known. We will estimate
lt = 0.3 first by the Morozov discrepancy principle, then by the L-curve criterion.

Let xl to be the solution to

xl = min
x

{∥∥∥L̃e(Ax− dt)∥∥∥2

2
+
∥∥∥L̃x,l(x)

∥∥∥2

2

}
(5.18)

where L̃Tx,lL̃x,l = Γ−1
x,l . The covariance Γx,l is constructed from the covariance function of

Equation (5.11) with h = 3 and correlation length l. The “true” covariance in this problem is
Γx,0.3. The Morozov discrepancy principle for standard Tikhonov regularisation estimates αt
with αM as

αM = min
α

{
‖Axtik,α − dt‖2 − σ

}
(5.19)

where xtik,α is the Tikhonov estimate found with such α and σ = E(‖e‖2). I generalise the
Morozov approach by estimating lt with lM as

lM = min
l
{‖Axl − dt‖2 − σ} . (5.20)

Several estimates xl are computed with different l values. Corresponding ‖Axl − dt‖2 and
‖e‖2 is plotted in Figure 5.18. Observe that lM ≈ 0.6.

We now compute the MAP estimate and posterior covariance for lM = 0.6. The MAP with
3σ̂ posterior error intervals is shown in Figure 5.19. The MAP is too smooth, as expected when
using lM ≈ 2lt. The posterior error interval is slightly too narrow. The posterior covariance
is visualised in Figure 5.20. Note that the diagonal approximation around Γx|d(50 : 150, 50 :
150) is not valid, resulting in the overly narrow posterior error intervals of Figure 5.19.

I now adapt the L-curve criterion to the problem of estimating lt. I compute the log-log
plot of ‖xl‖2 against ‖Axl − d‖2 and look for a “kink”. The log-log plot is shown in Figure
5.21. This is an unusual “L-curve” plot, but recall that the L-curve criterion is typically used
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Figure 5.18: Finding l such that ‖Axl − dt‖2 ≈ σ

Figure 5.19: MAP estimate and posterior error
interval with lM = 0.6 alongside ground truth

Figure 5.20: Γx|d with lM = 0.6

to control the norm of the estimates [78], while in this case we are attempting to adapt the
L-curve criterion to control the correlation length/smoothness of the estimate. While there is
no L shaped curve, a clear kink is still visible at l = 0.2. I take lL = 0.2 to be the adapted
L-curve estimate of lt = 0.3.

The MAP and 3σ̂ posterior error interval for lL = 0.2 is plotted in Figure 5.22. The esti-
mates compare well when compared to the “best case” reconstruction of Section 5.1.1 which
used the true lt = 0.3. The posterior covariance Γx|d for lL = 0.2 is visualised in Figure 5.23.
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Figure 5.21: The “L-curve” for l

Figure 5.22: MAP estimate and posterior error
estimate with lL = 0.2 alongside ground truth

Figure 5.23: Γx|d with lL = 0.2

The adapted versions of the Morozov discrepancy principle and L-curve criterion I defined
performed fairly well for this problem. This problem involved evaluating the single parameter
l ∈ R i.e. np = 1. Generalisations of the Morozov discrepancy principle and L-curve criterion
for np > 1 can be found in the literature e.g. [77].
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5.1.3 Direct Filter Construction

Recall that for Gaussian priors, draws can be computed as xj = Lxwj +µx where wj is a draw
of w ∼ N (0nx,1, Inx) and LxLTx = Γx. The matrix Lx is sometimes called the information
filter. Similarly, a matrix L̃x such that wj = L̃x(xj − µx) is the innovation filter or whitening
filter [4, 79]. Note that L̃Tx L̃x = Γ−1

x .
It may be that a filter is constructed without first constructing the covariance. In this thesis,

constructing a filter before the covariance is called direct filter construction.
Suppose we wished to have a prior on x such that x is smooth. We could construct Γx

using a smoothness covariance function as in section 5.1.1. However, we could instead reuse
our convolution operator F from Section 2.3, which we know smooths data i.e. let Lx = F
and Γx = FF T . A draw xj = Fwj is shown in Figure 5.24. Observe that the draw is smooth.

Figure 5.24: Draw from the prior, where Lx was constructed directly as a convolution operator

When constructing a filter directly, it can be easy to accidentally impose additional structure
on x. For example, by taking Lx = F where F is the convolution matrix of Section 2.3, draws
will be near 0 near the computational domain edges t = 0 and t = 20. We avoided this
problem by restricting to the region of interest t ∈ [5, 15].

Another method of implementing a smoothing filter would be to use a (fast) Fourier trans-
form method for convolution. More information on the fast Fourier transform (FFT) can be
found in [32]. Draws can be computed as

xj = Lxwj = F−1

(
kf �F(w)

)
(5.21)

where kf = F(k) is the Fourier transform of the convolution kernel and � is the Hadamard
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product. More details on this result can be found in [80, 81]. The Hadamard product of
B1 ∈ Rn×m and B2 ∈ Rn×m is B3 = B1 �B2 where B3(j, k) = B1(j, k)×B2(j, k).

The FFT filter requires kf ∈ Rnx be stored in memory, and draws can be evaluated in
O(nxlog(nx)) flops [32]. Compare this to storing Lx ∈ Rnx×nx in memory, and computing
draws in O(n2

x) flops. Recall that the convolution matrix F of Section 2.3 assumed the signal
was 0 outside the domain. The Fourier transform formulation assumes the signal is circulant
i.e. the signal represents 1 cycle of a periodic function [81].

The FFT formulation also gives a simple way of constructing an innovation filter. Consider

wj = L̃xxj = F−1

(
k̃f �F(x)

)
(5.22)

where

k̃f (j) =
1

kf (j)
(5.23)

where we call kf the Fourier filter and k̃f the inverse Fourier filter.
In the case that kf (j) = 0, k̃f is undefined. We can instead construct a “regularised form”

k̃f,κ(j) =
kf (j)

kf (j)2 + κ2
(5.24)

where κ ∈ R is some positive number. Recall the similarity to the filter factors of standard
Tikhonov regularisation discussed in Section 3.4. The above is a form of the Wiener filter [79].

Alternatively, we can form the average inverse Fourier filter from samples. We compute
m samples wj and xj using the information filter, and inverse Fourier filter samples as

k̃f,j =
F(wj)

F(xj)
. (5.25)

or k̃f,j = 0 when F(xj) = 0. We then compute

k̃f =
1

m

m∑
j=1

k̃f,j (5.26)

which we call the sample average inverse Fourier filter. This technique can also be used when
we only have samples xj and wj without additional knowledge of the underlying prior. The
concept of a Fourier filter constructed from samples is considered further in Section 6.8, and is
applied in Chapters 8 and 9.
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5.1.4 Structured Gaussian Priors

Suppose we have structural information about x. An example of structural information is
knowing x to have larger values in a particular region. Such information can easily be incorpo-
rated into µx.

Consider the case that Ωx can be divided into 2 subdomains Ωx,1 and Ωx,2 where Ωx =
Ωx,1 ∪ Ωx,2 and Ωx,1 ∩ Ωx,2 = ∅. Suppose xΩ1 , the values of x in Ωx,1 have little relationship
with xΩ2 , the values of x in Ωx,2. We can express this with a Gaussian prior by assigning little
cross correlation to xΩ1 and xΩ2 . This could be the case where x represents density, and Ω1

and Ω2 are the locations of 2 different materials.
Let Ωx = [5, 15], and x ∼ N (0nx,1,Γx). Let Ωx,1 = [5, 10] and Ωx,2 = [10, 15]. Let

Γx(j, k) =



(
h1
3

)2
exp

(
−‖tj−tk‖22

2l21

)
tj , tk ∈ [5, 10](

h2
3

)2
exp

(
−‖tj−tk‖22

2l22

)
tj , tk ∈ (10, 15](

h3
3

)2
exp

(
−‖tj−tk‖22

2l23

)
otherwise

(5.27)

i.e. different smoothness priors in and between Ωx1 and Ωx2 . If there is no correlation between
Ωx1 and Ωx2 ,

Γx(j, k) =


(
h1
3

)2
exp

(
−‖tj−tk‖22

2l21

)
tj , tk ∈ [5, 10](

h2
3

)2
exp

(
−‖tj−tk‖22

2l22

)
tj , tk ∈ (10, 15]

0 otherwise

(5.28)

which we call the h3 = l3 = 0 case, even though the general form in Equation (5.27) is not
defined for h3 = l3 = 0.

Let h1 = 3, l1 = 0.3, h2 = 5, l2 = 2 and h3 = l3 = 0 i.e. the no cross correlation case.
The covariance Γx is visualised in Figure 5.25. Note the correlation structure around element
101 i.e. t(101) = 10. This is an example of a nonstationary prior. A draw xj using this prior is
shown in Figure 5.26. Note the jump at t = 10 as we move into the new region, and the greater
smoothness in the (10, 15] region.

An important note to make with priors structured as above is that subdomain locations
need to be known exactly when Γx is constructed. If the correlation structure of x changed at
t = 13 instead of t = 10, draws in the [10, 13] region would be far too smooth. Parameterised
priors πpx(x) were discussed in Section 5.1.2. The prior used above can be thought of as p =
(h1, h2, h3, l1, l2, l3, t

∗) where t∗ = 10 is the division between the regions. The methods of
Section 5.1.2 could be applied to estimating t∗.

We now consider isotropic priors. Specifically, we will construct an isotropic Gaussian
smoothness type prior in 2D. Let Ω = [0, 10] × [5, 15] where t(1) ∈ [0, 10] is the horizontal
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Figure 5.25: Structured prior covariance Γx Figure 5.26: Draw xj from structured prior

axis and t(2) ∈ [5, 15] is the vertical axis. Let ∆t = 0.2. Let t(1) = (0,∆t, 2∆t, . . . , 10) ∈ R51

and t(2) = (5, 5 + ∆t, 5 + 2∆t, . . . , 15) ∈ R51 be finite dimensional approximations of t(1)

and t(1). Let x(t) be a function for t ∈ Ω. Let

x =

(
x
(
t(1)(1), t(2)(1)

)
,x
(
t(1)(1), t(2)(2)

)
, . . .

. . . ,x
(
t(1)(1), t(2)(51)

)
,x
(
t(1)(2), t(2)(1)

)
, . . .

. . . ,x
(
t(1)(51), t(2)(51)

))
∈ R2601

(5.29)

be the vectorised finite dimensional approximation of x.
Let us compute an isotropic smoothness prior on x with h = 3 and l = 1. The correspond-

ing prior covariance Γx is visualised in Figure 5.27. The submatrix Γx(1 : 510, 1 : 510) is
represented in Figure 5.28. Note the 51 × 51 blocks of Γx that each look like 1D smoothness
covariances e.g. in Figure 5.15. This is a consequence of the vectorisation of x.

We now compute a draw xj from the above 2D isotropic smoothness prior. A side on view
of xj on Ω is shown in Figure 5.29 and a top down view in 5.30. Note the “bumps” with
approximate height 3 and radius 1, corresponding to h = 3 and l = 1.

Rather than roughly symmetric “bumps”, we may want “bands” in x. Consider the covari-
ance function

Γx(j, k) =

(
h

3

)2

exp

(
−1

2

((
t(1)(j)− (t(1)(j)

)2
l21

+

(
t(2)(j)− (t(2)(j)

)2
l22

))
(5.30)

i.e. the standard smoothness covariance function but with different correlation lengths for each
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Figure 5.27: Isotropic smoothness Γx Figure 5.28: Γx(1 : 510, 1 : 510)

Figure 5.29: Draw from 2D smoothness prior Figure 5.30: Top down view

axis. We rewrite Equation (5.30) as

Γ(i, j) =

(
h

3

)2

exp
(
−1

2
‖W (ti − tj)‖22

)
(5.31)

where

W =

( 1
l1

0

0 1
l2

)
. (5.32)

Now suppose we wish to rotate the bands by angle θ. This can be achieved by using a
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rotation matrix

Rθ =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(5.33)

to form the covariance matrix

Γ(j, k) =
h2

3
exp

(
−1

2
‖Wθ(ti − tj)‖22

)
(5.34)

where Wθ = WRθ.
We now construct the rotated anisotropic smoothness prior with l1 = 2, l2 = 0.2 and

θ = π
4 by Equation (5.34). The corresponding covariance Γx is visualised in Figure 5.31 and

Γx(1 : 510, 1 : 510) is represented in Figure 5.32. A draw xj of this prior is shown side
on in Figure 5.33 and top down in fig 5.34. Observe that xj has “bands” with approximate
length 2l1 = 4 and width 2l2 = 0.4 rotated by θ = π

4 . Note that this prior has parameters
p = (h, l1, l2, θ), but the locations of the bands are not explicitly parameterised.

5.2 L-1 Priors

Gaussian priors are of the form

π(x) ∝ exp(−1

2

∥∥∥L̃x(x− µx)
∥∥∥2

2
) (5.35)

whereas L-1 priors are of the form

π(x) ∝ exp(−1

2

∥∥∥L̃x(x− µx)
∥∥∥

1
) (5.36)

where we note the change to the L-1 norm

‖x‖1 = |x(1)|+ |x(2)|+ · · ·+ |x(nx)|. (5.37)

L-1 priors are also known as Laplace priors [65]. The term L-1 prior is used often in
inverse problem literature such as [3, 4].

To draw samples from a distribution π(x), first compute the cumulative distributionFπ(x) =∫ x
−∞ πx(s)ds, a nondecreasing function from 0 to 1. A sample xj is computed with inverse

probability transform sampling as xj = F−1
π (uj) where uj is a sample of u ∼ U(0, 1). More

discussion on inverse transform sampling can be found in [82].
Let π(x) = exp (−α ‖x‖1) with x > 0. This is the positive constrained L-1 prior, and

has inverse cumulative distribution F−1
π (u) = − 1

α log(1 − u). A draw on a 1-D domain with
α = 1, nx = 200 is shown in Figure 5.35. A draw on a 2-D domain with α = 1, nx = 1, 000
is shown in Figure 5.36.
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Figure 5.31: Anisotropic Γx Figure 5.32: Γx(1 : 510, 1 : 510)

Figure 5.33: Draw xj , side view Figure 5.34: Draw xj , overhead view

Consider the generalised L-1 prior π(x) ∝ exp(−1
2

∥∥∥L̃x(x− µx)
∥∥∥

1
). Note that L̃Tx L̃x 6=

Γ−1
x . Let d = A(x) + e where e ∼ N (µe,Γe). The posterior distribution is

πx|d(x|dt) ∝ exp
(
−1

2

(∥∥∥L̃e(dt −A(x)− µe)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥
1

))
(5.38)

with MAP

xMAP = min
x

{∥∥∥L̃e(dt −A(x)− µe)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥
1

}
(5.39)

which is not equal to the CM. The MAP estimate with L-1 prior and Gaussian noise is also
known as the LASSO estimate in statistics [83]. Even if A(x) = Ax, the posterior distribution
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Figure 5.35: 1-D L-1 prior draw Figure 5.36: 2-D L-1 prior draw

is not Gaussian when an L-1 prior is used, so the MAP cannot be found as the solution to
a linear algebra problem. Computationally efficient methods of finding the MAP by convex
optimisation can be found in [84, 85].

L-1 priors are sometimes used to promote sparsity i.e. the estimate xMAP formed as in
Equation (5.40) with µx = 0nx,1 is expected to have a few relatively large elements, but most
elements near 0. Examples of the sparsity promotion in practice can be found in e.g. [86, 87,
88]. This is reflected in the L-1 draws of Figures 5.35 and 5.36. A visual explanation of how
the L-1 norm promotes sparsity better than the L-2 norm is given in Figure 5.37. The element
of a set e.g. Xls with smallest L-1 norm is likely sparse. Note that the Lasso estimate is not
in the set Xls, with Figure 5.37 demonstrating a simplified case. The case described in Figure
5.37 corresponds to

lim
α↓0

xMAP = lim
α↓0

min
x

{
‖dt −A(x)‖22 + α ‖x‖1

}
(5.40)

similar to the pseudoinverse x† = A†d estimate.

5.3 Total Variation

Another useful type of exponential prior is the total variation (TV) prior. A thorough review
of total variation in the context of image analysis can be found on [89]. Let x(t) with t ∈ R
be a differentiable function on Ω. The total variation of x on Ω is

TV(x) =

∫
Ω
|x′(t)|dt (5.41)
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Figure 5.37: The green line is a set of points X . The red diamond is the set of points Y1 where
for all y1 ∈ Y1, ‖y1‖1 = α1. The blue circle is the set of points Y2 where for all y2 ∈ Y2,
‖y2‖2 = α2. The point x1 ∈ X at the intersection of the green line and red diamond is the
element of X with minimum L-1 norm. The point x2 ∈ X at the intersection of the green line
and blue circle is the element of X with minimum L-2 norm.

and the total variation prior on x is

πx(x) ∝ exp
(
αTV(x)

)
(5.42)

with α ∈ R.
Let x and t be finite dimensional approximations to x and t i.e. x(j) = x(t(j)). Let t be

equispaced i.e. t(j + 1) − t(j) = ∆t. A finite dimensional approximation to the TV operator
is

TV(x) = ‖T+x‖1 + ‖T−x‖1 (5.43)

where

T+ =
∆t

2



1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
0 0 1 −1 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 −1
0 0 0 0 . . . 0 1


∈ Rnx×nx (5.44)
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and T− = T T+ . Note that we are taking a central difference estimate of the total variation,
whereas a purely forward or backwards difference approach could be implemented as an L-1
prior. Note that only in the forward/backwards, single dimensional case can the TV prior be
implemented as a purely L-1 type prior, as other cases require a summation of L-1 terms.

Let x be a 1-D signal. We observe data d as d = x + e where e ∼ N (0nd,1, σ
2
eI). Let a

particular realisation be dt = xt + et. Estimating xt from dt is called denoising. The MAP
estimate of xt using a TV prior is

xMAP,α = min
x

{∥∥∥∥ 1

σe
(d− x)

∥∥∥∥2

2

+ αTV(x)

}
(5.45)

where α is some positive number. Computing the MAP estimate as in Equation (5.45) is also
known as total variation denoising.

We solve the nonlinear optimisation problem of Equation (5.45) with a gradient based
method. This requires derivatives of the TV functional. Note that the TV functional in Equation
(5.52) makes use of the absolute value function f(τ) = |τ | where τ ∈ R in this section. The
absolute value function is not differentiable at τ = 0. In this thesis, the approximation

|τ | ≈ gρ(τ) =
1

ρ
log
(
cosh(ρτ)

)
(5.46)

is used. Increasing ρ ∈ R improves the quality of the approximation. The derivative g′ρ of gρ is

d

dτ

(
1

ρ
log
(
cosh(ρτ)

))
= g′ρ(τ) = tanh(ρτ). (5.47)

Shown in Figure 5.38 is f(τ) = |τ | alongside gρ with ρ = 10 and ρ = 200. Corresponding
derivatives are shown in Figure 5.39 although we define f ′(0) = 0. Consider finding the
minimum of f with a derivative based method. Based on Figure 5.39, a line search might use
small ρ initially, to avoid “jumping over” the minimum.

I compute the MAP of Equation (5.45) by gradient descent. A review of gradient descent
can be found in [46]. The gradient φk of the functional in Equation (5.45) at xk, the k’th iterate
of x, making the approximation of Equation (5.46) is

φk(j) =
∂

∂xk(j)

(∥∥∥∥ 1

σe
(dt − xk)

∥∥∥∥2

2

+ αTV(xk)

)
(5.48)

≈ 2

σ2
e

(
xk(j)− dt(j)

)
+

α

∆t

(
tanh

(
ρ
(
xk(j)− xk(j − 1)

))
+ tanh

(
ρ
(
xk(j)− xk(j + 1)

)))
(5.49)
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Figure 5.38: Absolute value function
f(τ) = |τ | alongside approximations gρ(τ)

with ρ = 10 and ρ = 200

Figure 5.39: f ′(τ) with f ′(0) = 0 alongside
g′ρ(τ) with ρ = 10 and ρ = 200

Figure 5.40: True, noisy and TV MAP signals

which is used to iteratively approximate the MAP as

xk+1 = xk + βφk (5.50)

where β is the step length. At each iterate, a larger value of ρ is used.
The particular realisation dt = xt + et is plotted in Figure 5.40. The MAP computed with

steepest descent as described above is also shown. Note that the TV MAP estimate is generally
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“flat”, and captures the sharp drop in xt at t = 100.
Let us consider use of TV regularisation on 2-D images. Let d = x + e where x is a

(vectorised) 2-D image, d is a noisy image and e ∼ N (0nd,1,Γe) is additive noise. The MAP
estimate for a particular realisation dt = xt + et is

xMAP = min
x

{∥∥∥L̃e(dt − x)
∥∥∥2

2
+ αTV (x)

}
(5.51)

as in the 1-D case, but with the 2-D total variation functional

TV(x) = ‖Tleftx‖1 + ‖Trightx‖1 + ‖Tupx‖1 + ‖Tdownx‖1 (5.52)

where Tleft takes the difference to the left pixel of x(j), Tup takes the difference to the pixel
above, and so on.

The ground truth xt is shown in Figure 5.41. This is a subsection of the common “Barbara”
test image. The noiseless et = 0 TV MAP “estimate” with large α = α1

xMAP,et=0,α1 = min
x

{∥∥∥L̃e(dt − x)
∥∥∥2

2
+ α1TV (x)

}
(5.53)

is shown in Figure 5.43. Note the “cartoonish” quality of the image, which now consists of a
few distinct patches of colour.

Now consider estimating xt from dt = xt + et where et 6= 0nd,1 is a realisation of e ∼
N (0nd,1, σ

2
eInd). The data dt is shown in Figure 5.42. The noiseless TV MAP “estimate” with

α = α2 ≤ α1 is shown in Figure 5.44. Note that this is less “cartoonish” than the noiseless
TV MAP estimate with α1 of Figure 5.43. The noisy TV MAP estimate with α = α2 is shown
in Figure 5.46. Notice how much of the noisy “fuzz” has been removed, and the image only
looks slightly “cartoonish”. The noisy TV MAP estimate with α = α1 is shown in Figure 5.45.
The noisy “fuzz” is gone, but the image is very “cartoonish”. Note that the noiseless and noisy
MAP with α = α1 in Figures 5.43 and 5.45 are very similar.

Another interesting image processing application is reconstructing an image when many
pixels have been masked. From an original image xt, “masked” data is dt = Mxt where the
“mask” M sets various elements to 0. In this case, we will be masking half of the pixels. The
MAP estimate

xMAP = min
x

{
‖M(dt − x)‖22 + αTV(x)

}
(5.54)

is the “reconstructed” image. The masked image dt is shown in Figure 5.47. The reconstruction
is shown in Figure 5.48. In this case the mask M is known exactly and there is no noise. In
practical applications e.g. removing scratches from images, there will be noise and M has to
be estimated.
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Figure 5.41: xt, a subsection of “Barbara” Figure 5.42: Noisy data dt

Figure 5.43: Noiseless TV MAP “estimate”
xMAP,et=0,α1

Figure 5.44: Noiseless TV MAP “estimate”
xMAP,et=0,α2

Figure 5.45: α = α1 TV MAP estimate
xMAP,α1

Figure 5.46: α = α2 TV MAP “estimate”
xMAP,α2
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Figure 5.47: Masked “Barbara” Figure 5.48: TV Reconstruction

It is important to note that the total variation prior is not discretisation invariant [90].
Changing the dimension of the unknown affects the correlation structure of the solution. Dis-
cretisation invariance is discussed further in Section 6.3.2. More details on discretisation invari-
ance of priors can be found in [91]. There are methods of making the TV prior discretisation
invariant, in particular, the typical TV functional can be synthesised with a Gaussian type prior
as in [92].

5.4 Differential Priors

Another useful family of priors to consider are “differential” priors, in which the prior on x is
in terms of a differential equation. For example, the TV prior on x as defined in equation 5.41
as a differential equation and is therefore a differential type prior. The covariance functions of
Gaussian priors are considered in terms of differential equations in [73] and [93]. A general
review of differential priors can be found in [94]. Explicit use of differential priors is beyond
the scope of this thesis, although results of analysis of priors as differential equations will be
used, particularly in Section 6.5.



Chapter 6

Computational Methods

Let d = Ae(x, e) be a model, and dt = Ae(xt, et) be a particular realisation. Estimating
xt from dt and quantifying the uncertainty in the estimate is often computationally intensive
[4, 36]. This chapter presents methods of reducing this computational cost.

The computational cost is considered at the offline and online stage. The online stage is
observing dt and computing an estimate of xt, possibly with uncertainty quantification. The
offline stage is everything leading up to the online stage. The offline stage will typically involve
running simulations, tuning parameters, comparing models and so on.

Each phase has different computational considerations. Consider [95] in which EIT mea-
surements are taken of a pipe to reconstruct the internal flow. During the offline phase, as
much computational power as the research institute can provide is available, and available time
for computations is on the order of funding rounds. In the online phase, on the factory floor,
reconstructions need to compute within milliseconds on cheap commercial hardware [96, 97].

The recursive QR method is proposed in Section 6.4.2. Recursive QR is a method of com-
puting estimates of statistical quantities from samples, parallel with samples being computed.
This method is developed for scenarios in which samples are computed relatively slowly.

The concept of local sample compression is proposed in Section 6.6, extending the work of
[37]. The local sample compression method finds a low rank approximation to an operator in
a particular region. In the context of inverse problems, local sample compression allows us to
form a low rank approximation to the forward operator A in the effective support of the prior
πx(x).

The methods of this chapter are adapted and updated with the aim of being applied together
to inverse problems. How to apply the methods to a general inverse problem is explained in
Chapter 7. The methods are then applied together in Chapters 8, 9 and 10.

93
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6.1 Simple Example of Precomputations

Computations at the offline phase can be used to reduce the computations required at the online
phase. This section presents a trivial example to demonstrate the concept.

Consider the finite dimensional linearAGaussian x, e and additive noise model d = Ax+e
where x ∼ N (µx,Γx) and e ∼ N (0nd,1,Γe). Let dt = Axt + et be a particular realisation.
The MAP estimate of xt from dt is

xMAP = min
x

{∥∥∥L̃e(dt −Ax)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(6.1)

=

(
L̃eA

L̃x

)†(
L̃edt
L̃xµx

)
(6.2)

=
(
B1 B2

)( L̃edt
L̃xµx

)
(6.3)

= B1L̃ed+B2L̃xµx (6.4)

= B̂d+ b (6.5)

where B =
(
B1 B2

)
=

(
L̃eA

L̃x

)†
, B̂ = B1L̃e and b = B2L̃xµx. Note that B̂ ∈ Rnx×nd and

b ∈ Rnx can be computed offline. The online computation of xMAP is computing the product
B̂d and adding b. Recall that the posterior covariance is

Γx|d = (Γ−1
x +ATΓ−1

e A)−1 (6.6)

which can also be computed at the offline phase. If σ̂ = diag(Γx|d) is used to compute posterior
error intervals as e.g. xMAP ± 3σ̂, then the online uncertainty quantification computation is
adding/subtracting 3σ̂ from the MAP.

6.2 Improper Priors and Reduced Bases

Let x ∼ N (µx,Γx). This can be expressed as

π(x) = exp(−1

2

∥∥∥L̃x(x− µx)
∥∥∥2

2
) (6.7)

where L̃Tx L̃x = Γ−1
x . Note that Γ−1

x exists if and only if Γx is full rank. A prior with rank
deficient Γx is a type of improper prior. A proper prior is a prior such that∫

Rnx
πx(x)dx = 1 (6.8)
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and a prior that does not satisfy the above is an improper prior. More details on proper and
improper priors can be found in [98].

Let

Γx = UxΛxU
T
x (6.9)

=
(
Ux,rxt Ux,null

)( Λx,rxt 0rxt ,nx−rxt
0nx−rxt ,rxt 0nx−rxt ,nx−rxt

)(
UTx,rxt
UTx,null

)
(6.10)

= Ux,rxtΛx,rxU
T
x,rxt

(6.11)

be the eigendecomposition of rank rxt prior covariance matrix Γx. For the rest of this discus-
sion, the effective rank rx is considered rather than the true rank rxt .

Consider a pseudoinverse type approach for Γx rank deficient. An innovation filter L̃x,rx ∈
Rrx×nx can be formed as

L̃x,rx = Λ
− 1

2
x,rxU

T
x,rx (6.12)

as L̃Tx,rxL̃x,rx = Γ†x. A prior might be attempted of the form

πx(x) = bexp(−1

2

∥∥∥L̃x,rx(x− µx)
∥∥∥2

2
). (6.13)

where b ∈ R is some constant. However, there is no b such that the
∫
Rnx πx(x)dx = 1. Note

that

µx = max
x
{πx(x)} (6.14)

and

πx(µx) = b. (6.15)

Let xnull =
∑nx

j=rx+1 bjuj be an element of the nullspace of Γx, where the bj ∈ R are arbitrary.
Note that L̃x,rx(x− µx + xnull) = L̃x,rx(x− µx) i.e. x and x+ xnull are “equally likely” with
this prior. However, x with a xnull component would be expected to have 0 probability. The
pseudoinverse of the covariance should therefore not be used for constructing the innovation
filter, as such a filter assigns no penalty to unwanted xnull components.

Suppose Γx has rank rx < nx. Such a covariance could be replaced by

Γx ≈ Γx,+κ = Γx + κInx (6.16)

where κ ∈ R is a small positive number. Note that Γx,+κ is a positive definite matrix, so Γ−1
x

exists and filters can be computed.
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Another method of ensuring a positive definite covariance is to introduce a penalty sub-
space. The penalty subspace approximation is

Γx ≈ Γx,κ2 = Γx + κ2Ux,nullU
T
x,null (6.17)

= Γx + κ2(Inx − Ux,rxUTx,rx) (6.18)

= Ux,rxΛx,rxU
T
x,rx + κ2Ux,nullU

T
x,null (6.19)

=
(
Ux,rx Ux,null

)( Λx,rx 0rx,nx−rx
0nx−rx,rx κ2Inx−rx

)(
UTx,rx
UTx,null

)
(6.20)

where κ ∈ R is a small positive number. Note that

Lx,κ =
(
Ux,rx Ux,null

)( Λ
1
2
x,rx 0rx,nx−rx

0nx−rx,rx κInx−rx

)
(6.21)

Γ−1
x,κ2 =

(
Ux,rx Ux,null

)( Λ−1
x,rx 0rx,nx−rx

0nx−rx,rx
1
κ2 Inx−rx

)(
UTx,rx
UTx,null

)
(6.22)

L̃x,κ =

(
Λ
−1
2
x,rx 0rx,nx−rx

0nx−rx,rx
1
κInx−rx

)(
UTx,rx
UTx,null

)
. (6.23)

Another method of ensuring a positive definite covariance is to explicitly remove the nullspace
of Γx. Let

a = UTx,rxx (6.24)

with a ∈ Rrx be a new approximation of the unknowns. Note that

Γa = Λx,rx (6.25)

is full rank. This reduces the nx dimensional problem of estimating x to the rx dimensional
problem of estimating a. Let â be an estimate of ground truth at. Then the estimate x̂ =
Ux,rx â of xt has explicitly no nullspace component, in contrast with solutions found using the

pseudoinverse filter L̃x,rx = Λ
− 1

2
x,rxU

T
x,rx .

6.2.1 Basis Reduction Example

The use of a reduced basis in inverse problems is widespread. For example, the tSVD solu-
tion restricts estimates to the subspace spanned by the r largest singular vectors i.e. x†r =∑r

j=1 ajvj where aj ∈ R and vj ∈ Rnx is the j’th column of Vr in A ≈ Ar = UrDrV
T
r , the

rank r thin SVD ofA. The proper orthogonal decomposition (POD) is another example of a re-
duced basis used in inverse problems, that can be extended to nonlinear operators [52, 53, 54].
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The likelihood-informed subspace (LIS) [99] is an example of a potentially low dimensional
subspace inverse problem estimates can be restricted to. Restricting A to a subspace results in
a reduced order model Âr, that is potentially faster to evaluate. Using reduced order models
can be particularly useful in reducing the computational cost of MCMC [100]. Computation of
reduced order models and bases is considered further in Section 6.6.

A common and interesting case is that the prior covariance is almost rank deficient. For
example in a smoothness prior, increasing the correlation length increases the number of near-
zero eigenvalues. Recall the 1D deconvolution problem with a Gaussian smoothness prior from
Section 5.1.1. Consider the smoothness prior covariance matrices Γx,l. The eigenvalues of Γx,l
with l = 0.1, l = lt = 0.3 and l = 1 are shown in Figure 6.1. Note that larger correlation
lengths l correspond to a larger number of relatively small eigenvalues.

Figure 6.1: Eigenvalues of smoothness priors with different correlation lengths

Consider the 1D deconvolution problem of Section 2.3.2. Let Γx be a smoothness prior
with h = ht = 3 and l = lt = 0.3. Note from Figure 6.1 that

Γx = UxΛxU
T
x ≈ Ux,100Λx,100U

T
x,100 (6.26)

i.e. rx = 100. In this section, we estimate

at = UTx,100xt (6.27)
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from data dt where dt = Axt + et. The MAP estimate of at is

aMAP = min
a

{∥∥∥L̃e(dt −AUx,100a)
∥∥∥2

2
+

∥∥∥∥Λ
− 1

2
x,100a

∥∥∥∥2

2

}
(6.28)

=

(
L̃eAUx,100

Λ
− 1

2
x,100

)†(
L̃edt

0

)
(6.29)

= Âad̂a (6.30)

where Âa ∈ R(nd+100)×100 and d̂a ∈ Rnd+100. This can be used to compute the estimate
xMAP,a = Ux,100aMAP of xt. Uncertainty can be quantified by forming the posterior on a as

Γa|d = (Γ−1
a + (AUx,100)TΓ−1

e AUx,100)−1 (6.31)

which can be converted to a posterior on x as

Γxa|d = Ux,100Γa|dU
T
x,100. (6.32)

The estimate xMAP,a is shown in Figure 6.2 along with posterior error intervals taken from
Γxa|d. The estimates found without reducing the basis are shown in Figure 6.3.

Figure 6.2: Reduced basis rx = 100 estimates
xMAP,a, σ̂x,a = diag(Γxa|d)

Figure 6.3: Complete basis nx = 201
estimates xMAP, σ̂x = diag(Γx|d)

The above example is a linear problem with Gaussian error and prior models. Section 6.1
showed that computing the MAP at the online stage can be reduced to

xMAP = b+ B̂d (6.33)
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where B̂ ∈ Rnx×nd and b ∈ Rnx . Similarly, the reduced basis approach can be reduced to

xMAP,a = b+ Ux,rx

(
B̂ad

)
(6.34)

where Ux,rx ∈ Rnx×rx and B̂a ∈ Rrx×nd . Computing xMAP requires 2nxnd flops, while
computing xMAP,a requires 2rx(nd+nx−1) flops. Therefore, reducing the basis is a potential
saving in computations and memory for such a case. Note that the reduced basis approach also
presents potential computational cost reductions for other cases e.g. nonlinear A, although the
cost reduction is more difficult to quantify [52, 99, 100].

6.3 The Bayesian Approximation Error

This section reviews the Bayesian Approximation Error (BAE) approach. The underlying idea
of BAE is to simulate data in the offline phase with an accurate but computationally expensive
model, and use these simulations to correct a less accurate but computationally efficient model
that will be used in the online phase. A formal outline can be found in [36]. This method has
been used in a variety of applications such as electrical impedance tomography [27], aquifer
estimation from seismic data [22], fluorescence diffuse optical tomography [101], dental x-ray
CT [33], full-wave ultrasound imaging [102], fluorescence molecular tomography [103] and
quantitative photoacoustic tomography [104].

Let the “accurate, expensive” model be

d = Ā(x̄, z̄, ξ̄) + e (6.35)

= Ā(ω̄) + e (6.36)

= ȳ + e (6.37)

where Ā is the forward model, x̄ is the unknown of interest, z̄ is an additional unknown, ξ̄ is
a model parameter, ȳ is the forward model prediction and e is additive error. ω̄ represents x̄,
z̄ and ξ̄. Note that the above is an additive error model. BAE can be adapted to more general
models, as described in [36].

Consider the deconvolution example from Chapter 2. In this problem, z̄ is the signal outside
the region of interest [5, 15]. The convolution kernel is defined by ξ̄. Typically, we would need
to also reconstruct z̄ and ξ̄ in order to find x̄ from d.

Let the “approximate, cheap” model be

d ≈ A(x, z, ξ) + e (6.38)

= y + e (6.39)

where A is the approximate forward model, x, z and ξ are approximations of x̄, z̄ and ξ̄
and y is the approximate forward model prediction. Typically x ∈ Rnx and x̄ ∈ Rnx̄ with
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nx < nx̄ and x = Px̄where P is a projection matrix. Often xwill be the “sufficient resolution”
approximation of the unknowns of interest. It is often also the case that z and ξ are fixed as e.g.
z = µz̄ and ξ = µξ̄. In this thesis we write A(x, z, ξ) = A(x) if z and ξ are fixed.

The model can be expressed as

d = Ā(x̄, z̄, ξ̄) + e (6.40)

= A(x) + Ā(x̄, z̄, ξ̄)−A(x) + e (6.41)

= A(x) + ε+ e (6.42)

where ε = Ā(x̄, z̄, ξ̄) − A(x) = ȳ − y is called the approximation error. Note that the above
equations are exact. The Bayesian approximation error approach is to build a statistical model
of ε during the offline phase, and use the statistical model to correct predictions from A during
the online phase.

In this thesis, BAE involves treating π(x) and π(ε) as normally distributed dependant vari-
ables. Treating x and ε as mutually independent leads instead to the enhanced error model
[105].

The model of ε is computed from sample statistics. First compute m samples εj of ε with
1 ≤ j ≤ m as

εj = Ā(x̄j , z̄j , ξ̄j)−A(xj) (6.43)

where x̄j , z̄j , ξ̄j and xj are also draws. Note that xj = Px,x̄x̄j . Theses samples are used
to construct sample matrices X̂ = (x1, x2, . . . , xm) ∈ Rnx×m and Υ̂ = (ε1, ε2, . . . , εm) ∈
Rnd×m where each column is a sample. The sample means are computed as

µ̂x =
1

m

m∑
j=1

xj (6.44)

µ̂ε =
1

m

m∑
j=1

εj (6.45)

and sample covariances as

Γ̂x =
1

m− 1
X̂X̂T − m

m− 1
µ̂xµ̂

T
x (6.46)

Γ̂ε =
1

m− 1
Υ̂Υ̂T − m

m− 1
µ̂εµ̂

T
ε (6.47)

Γ̂εx =
1

m− 1
Υ̂X̂T − m

m− 1
µ̂εµ̂

T
x (6.48)



6.3. THE BAYESIAN APPROXIMATION ERROR 101

which we refer to as the unbiased least squares estimates of the normal sample statistics µ and
Γ [106]. The conditional mean and covariance of ε given x are

µ̂ε|x = µ̂ε + Γ̂εxΓ̂−1
x (x− µ̂x) (6.49)

Γ̂ε|x = Γ̂ε − Γ̂εxΓ̂−1
x Γ̂Tεx (6.50)

where we note that the use of sample covariance estimates ensure Γ̂ε|x will be positive (semi)definite.
BAE effectively adds an affine correction term to the model A. Consider the predictions of

d given x. In the Bayesian framework, we could use E(d|x). Without BAE,

E(d|x) ≈ E(A(x) + e|x) = A(x) + µe (6.51)

whereas with BAE we can incorporate knowledge of ε to form

E(d|x) ≈ E(A(x) + ε+ e|x) (6.52)

= A(x) + µ̂ε|x + µe (6.53)

= A(x) + Γ̂εxΓ̂−1
x (x− µ̂x) + µ̂ε + µe (6.54)

hence the interpretation as an affine correction.
Define the total error ν as

ν = ε+ e (6.55)

with

µ̂ν|x = µe + µ̂ε|x = µe + µ̂ε + Γ̂εxΓ̂−1
x (x− µ̂x) (6.56)

Γ̂ν|x = Γe + Γ̂ε − Γ̂εxΓ̂−1
x Γ̂Tεx (6.57)

where we note that
∥∥∥Γ̂ν|x

∥∥∥
2
>
∥∥∥Γ̂e

∥∥∥
2

as Γ̂ε|x is positive semidefinite i.e the approximation error
framework increases the error covariance to account for the differences between the accurate
and the cheap models. The addition of approximation errors is particularly important when
approximation errors dominate measurement errors i.e.

∥∥∥Γ̂ε|x

∥∥∥
2
>
∥∥∥Γ̂e

∥∥∥
2

[91].

The derivation of the posterior distribution with approximation errors is similar to the
derivation in Section 4.1, resulting in

πx|d(x|d) ∝ exp

(
− 1

2

(∥∥∥L̃ν|x(d−A(x)− µν|x
)∥∥∥2

2
+Gx(x)

))
(6.58)



102 CHAPTER 6. COMPUTATIONAL METHODS

where πx(x) ∝ exp
(
− 1

2Gx(x)
)

and L̃Tν|xL̃ν|x = Γ̂−1
ν|x. Note that πx(x) is approximated as

normal in the construction of µ̂ε|x, but πx(x) appears exactly in the posterior. In the case that
πx(x) is normal, the posterior is

π(x|d)x|d ∝ exp

(
− 1

2

(∥∥∥L̃ν|x(d−A(x)− µν|x
)∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

))
(6.59)

where L̃Tx L̃x = Γ−1
x .

Consider the model

d = Ax+ e (6.60)

where x and e are normally distributed independent variables. Consider a particular realisation
dt = Axt + et. The MAP estimate of xt given dt without BAE is

xMAP,ε=0 = min
x
{||L̃e(dt −Ax− µe)||22 + ||L̃x(x− µx)||22} (6.61)

= min
x

{∥∥∥∥(L̃eAL̃x
)
x−

(
L̃e(dt − µe)

L̃xµx

)∥∥∥∥2

2

}
(6.62)

=

(
L̃eA

L̃x

)†(
L̃e(dt − µe)

L̃xµx

)
(6.63)

= Â†ε=0d̂t,ε=0 (6.64)

where the ε = 0 subscript is used to clarify that this estimate does not make use of BAE.
Compare this with MAP estimate found with BAE

xMAP = min
x

{∥∥∥L̃ν|x(dt −Ax− µν|x)∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(6.65)

= min
x

{∥∥∥L̃ν|x(dt −Ax− Γ̂εxΓ̂−1
x (x− µ̂x)− µe − µ̂ε

)∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(6.66)

=

(
L̃ν|x(A+ Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(d− µe − µ̂ε + Γ̂εxΓ̂−1

x µ̂x)

L̃xµx

)
. (6.67)

Note that A has been replaced with A + Γ̂εxΓ̂−1
x , a hybrid physical and statistical model, and

that d− µe is replaced with d− µe − µ̂ε, and the substitution from weighing the data by L̃e to
L̃ν|x where ||Γ̂ν|x||2 > ||Γ̂e||2, in turn increasing the weight given to the prior when computing
the MAP estimate with BAE.
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Now consider the posterior covariance. The derivation can be found in [36] and is similar
to the d = Ax+ e case of Section 4.1, yielding

Γx|d = (Γ−1
x +ATΓν|xA)−1 (6.68)

where A is replaced by Jacobian J if the operator is nonlinear and we make the Laplace ap-
proximation.

6.3.1 Inverse Crimes and Synthetic Demonstrations

This section reviews a potential error made when considering inverse problems, as described in
[5, 91]. When performing simulations to check the validity of a method, an inverse crime may
be committed. An example of an inverse crime is using the same model to simulate data and
estimate the ground truth. The simulated estimates are then more accurate than for real data.

A common way to avoid committing an inverse crime is to use an additional model for
simulating data for inversions. BAE would then require use of 3 models. The “accurate” model
Ā, the approximate modelA, and the “simulation” model ¯̄A. Typically this simply means using
3 discretisations, with ¯̄A using the finest, Ā the second finest, and A the coarsest. The models
Ā and A are used to build a model of ε.

Let ds = ¯̄A(¯̄xs, ¯̄zs,
¯̄ξs) + es be simulated data. The coarse model A and the statistical

model of ε are then used to estimate xs = Px,¯̄x ¯̄xs. The data ds is used when demonstrating the
validity of the estimation of xs.

How ¯̄xs is chosen should also be considered. Taking ¯̄xs as a draw of the prior is a low
level inverse crime. The demonstration case ¯̄xs should instead be drawn from a different (but
reasonable) prior or, ideally, come from a lab experiment. For example in Section 5.3, ¯̄xs was
Barbara, not a draw of the TV prior.

Ideally, we would not even use ¯̄A, instead using real world measurements dr. Note however
that this would also require real world knowledge of corresponding xr to check that the recon-
struction was correct. For the sake of the BAE framework, it would be even better still to not
need to use Ā, instead using a library of lab results to compute the difference betweenA(x) and
reality. This would require a vast amount of noiseless lab measurements ȳr and corresponding
xr, which is not generally forthcoming.

6.3.2 Discretisation Invariance

Another important consideration is discretisation invariance [5]. This was mentioned briefly in
Section 5.3. This section reviews prior discretisation invariance in greater detail, and is similar
to [91].

Consider a smoothness prior for s̄ =

(
x̄
z̄

)
with covariance Γs̄. Let Ls̄ be such that Ls̄LTs̄ =
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Γs̄. Draws are computed as

s̄j = Ls̄wj (6.69)

where wj ∈ Rns̄ is a draw of w ∈ N (0ns̄,1, Ins̄). Draws of x̄ are

x̄j = Px̄,s̄s̄j = Px̄,s̄Ls̄wj (6.70)

where Px̄,s̄ is a matrix that cuts out the z̄ component. The corresponding covariance matrix for
x̄ is therefore

Γx̄ = Px̄,s̄Ls̄(Px̄,s̄Ls̄)
T (6.71)

= Px̄,s̄Γs̄P
T
x̄,s̄. (6.72)

Now consider the prior on x. Samples xj of x are computed as

xj = Px,x̄x̄j = Px,x̄Px̄,s̄Ls̄wj = Px,s̄Ls̄wj (6.73)

where Px,x̄ is the projection matrix from x̄ to x. The covariance of x is therefore

Γx = Px,s̄Ls̄(Px,s̄Ls̄)
T (6.74)

= Px,s̄Γs̄P
T
x,s̄. (6.75)

Note that the above construction considers samples first, and then constructs the implied
covariances. The alternative approach would be to compute all of the covariance matrices
“directly” e.g. constructing covariances from the corresponding covariance function. In the
case of the smoothness prior, this means computing Γz̄ , Γs̄ and Γx with the same h and l. The
problem with this approach is that the priors will not be consistent. Let x ∼ N (µx,Γx) where
Γx = Px,s̄Γs̄P

T
x,s̄ and x̃ ∼ N (µx,Γx̃) where Γx̃ is constructed from the covariance function.

The correlation structures are fundamentally different i.e. Γx̃ 6= Γx. Furthermore, the draws
x̃j = Lx̃PCwj 6= Px̄j which would make the approximation errors εj = Ā(x̄j , z̄j , ξ̄j)−A(x̃j)
meaningless.

6.3.3 BAE Deconvolution Example

Let us apply BAE to the 1D deconvolution example of Section 2.3.2. Let s(t) be a signal
on Ω = [0, 20]. Let s(t) = x(t) for t ∈ Ωx = [5, 15] and s(t) = z(t) for t ∈ Ωz =
[0, 5) ∪ (15, 20].
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We will discretise our domain in 2 ways. Let

∆t̄ = 0.1 (6.76)

t̄ = (0,∆t̄, 2∆t̄, . . . , 20) ∈ R201 (6.77)

s̄(j) = s(t̄(j)) (6.78)

t̄x = (5, 5 + ∆t̄, 5 + 2∆t̄, . . . , 15) ∈ R101 (6.79)

x̄(j) = x(t̄x(j)) = s(t̄x(j)) (6.80)

∆t = 0.2 (6.81)

t = (5, 5 + ∆t, 5 + 2∆t, . . . , 15) ∈ R51 (6.82)

x(j) = x(t(j)) = s(t(j)) (6.83)

i.e. s̄ ∈ R201, x̄ ∈ R101, z̄ ∈ R100, x ∈ R51. In the approximate model, implicitly z = µz̄ =
0nz̄ ,1 i.e. A has no padding. Let x = Px,x̄x̄ where

Px,x̄ =
1

2


1 1 0 0 0 0 . . . 0 0
0 0 1 1 0 0 . . . 0 0
0 0 0 0 1 1 . . . 0 0
...

...
...

...
...

... . . .
...

...
0 0 0 0 0 0 . . . 1 1

 ∈ R51×101 (6.84)

and similarly Px,s =
(
051,50 Px,x̄ 051,50

)
∈ R51×201.

Let us consider discretisation variance. Let Γs̄ be constructed from the exponential squared
smoothness covariance function of Section 5.1.1 with height ht and correlation length lt. This
covariance is used to construct Ls̄, allowing draws to be computed as

x̄j = Px̄,s̄Ls̄wj (6.85)

where wj is a white noise draw and Px̄,s̄ removes the z̄ part of s̄. The discretisation invariant
prior covariance on x is therefore

Γx = Px,s̄Γs̄P
T
x,s̄ (6.86)

and the filter is Lx = Px,s̄Ls̄. Draws of x are computed as

xj = Lxwj . (6.87)

Let Γx̃ be constructed using the same covariance function, ht, and lt. This is then used to
construct the filter Lx̃. Draws are computed as

x̃j = Lx̃w̃j = Lx̃Px,s̄wj (6.88)
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Figure 6.4: Draws, same white noise wj Figure 6.5: Γx − Γx̃

Figure 6.6: Γx = PCΓs̄C
TP T Figure 6.7: Γx̃ from covariance function

noting that wj needs to be cut and downsampled. Example draws with the same wj are shown
in Figure 6.4. The discretisation invariant prior covariance Γx is visualised in Figure 6.6, and
Γx̃ is visualised in Figure 6.7. The difference of the two matrices Γx − Γx̃ is visualised in
Figure 6.5.

Let

k(t, ξ) = exp
(
− t2

ξ2

)
(6.89)

be the convolution kernel with ξ ∼ U(0.3, 0.7) the kernel width, recalling that t represents the
spatial variable on a continuous domain. Let k̄(j) = k(t̄(j), ξ) be used in the construction of
Ā and k(j) = k(t(j), µξ) be used in the construction of A. Kernels of different widths are
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shown in Figure 6.8. Let F̄ξ ∈ R201×201 be the convolution matrix using the kernel of width
ξ. Let F̄ξ s̄ = cξ ∈ R201 be the convolved signal. A signal s̄ is plotted alongside 3 convolved
signals cξ computed with the 3 kernels of Figure 6.8.

Figure 6.8: Different kernels k(t) Figure 6.9: Signal, and convolution with
different kernel widths

The model Ā ∈ R51×201 is constructed as

Ā = Md,x̄Px̄,s̄F̄ξ (6.90)

where Cx̄,s̄ ∈ R201×101 extracts the part of the signal s in Ωx i.e. x̄ = Px̄,s̄s̄ and Md,x̄ ∈
R51×101 maps to the measurement points. The model A ∈ R51×101 is constructed as

A = 2Md,x̄Px̄,s̄F̄µξP
T
x̄,s̄P

T
x,x̄ (6.91)

where we note that 2P Tx̄,s̄P
T
x,x̄ effectively upsamples x to x̄ and pads with z̄ = 0nz̄ ,1 and F̄µξ is

reused. Constructing A in this way can simplify the BAE process when F̄ comes from black
box software or is otherwise difficult to adapt to the discretisation we wish to use.

The model predictions ȳj = Ā(x̄j , z̄j , ξj) and yj = Axj are shown in Figure 6.10. Note
that Ā uses ξj = 0.4 and uses information about z̄, while the “approximate” model fixes
ξ = 0.5 and z = 0.

We now have everything required to begin the offline simulations of ε. We drawm = 1, 000
samples s̄j and ξj from which we compute xj and εj = Ā(x̄j , z̄j , ξj) − Axj . We construct
X̂ = (x1, x2, . . . , xm) and Υ̂ = (ε1, ε2, . . . , εm). These data matrices are used to construct the
sample means and covariance. The marginal approximation error covariance Γ̂ε is visualised in
Figure 6.11 and the conditional covariance Γ̂ε|x is visualised in Figure 6.12. Note the relative
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Figure 6.10: Forward mode predictions of Ā and A

“size” of each from the colorbar scales. Observe that the approximation error variance is largest
near t = 5 and t = 15, a consequence of not padding the domain with signal outside of [5, 15].

The eigenvalues of Γε are plotted in Figure 6.13. Observe that the approximation error
covariance is effectively low rank. Recall that BAE effectively replaces A with A + Γ̂εxΓ̂−1

x .
The matrix Γ̂εxΓ̂−1

x is visualised in Figure 6.14. Note that most of the “correction” seems to be
at entries corresponding to the endpoints t = 5 and t = 15.

Let dt = ¯̄A(¯̄xt, ¯̄zt, ξt) + et be data simulated with the extra fine forward model ¯̄A. This
model is computed similarly to Ā, but with n¯̄x > nx̄ and n¯̄s > ns̄ i.e. at an even finer
discretisation. Let e ∼ N (0nd,1, σ

2
eInd) where σe = 0.001. In this case, ‖Γε‖2 � ‖Γe‖2. The

MAP found without BAE is

xMAP,ε=0 = min
x

{∥∥∥L̃e(dt −Ax)
∥∥∥2

2
+
∥∥∥L̃x(x)

∥∥∥2

2

}
(6.92)

=

(
L̃eA

L̃x

)†(
L̃edt

0

)
(6.93)

with posterior covariance

Γx|d,ε=0 = (Γ−1
x +ATΓeA)−1 (6.94)

where we note µe = 0nd,1, µx = 0nx,1 in our model. The MAP found with BAE is

xMAP,ε = min
x

{∥∥∥L̃ν|x(dt −Ax− µε|x)
∥∥∥2

2
+
∥∥∥L̃x(x)

∥∥∥2

2

}
(6.95)

=

(
L̃ν|x(A+ Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(dt − µ̂ε)

0nx,1

)
(6.96)
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Figure 6.11: Γ̂ε Figure 6.12: Γ̂ε|x

Figure 6.13: Eigenvalues of Γ̂ε Figure 6.14: Γ̂εxΓ̂−1
x

with posterior covariance

Γx|d,ε = (Γ−1
x +ATΓν|xA)−1. (6.97)

We will take 3σ̂ posterior error intervals from the posterior covariance diagonal.
The MAP estimate and posterior error intervals found without BAE are shown in Figure

6.15. Note that xMAP,ε=0 seems to “overestimate” the solution, similar to the Tikhonov esti-
mates with too small a penalty term as in Sections 3.4.2 and 4.2.6. Note also that the posterior
error intervals are far too narrow. The “overestimating” MAP and undersized posterior error
intervals are a result of underestimating the error, using only e instead of ν = e+ ε.
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Figure 6.15: MAP and posterior error
intervals from standard error model

alongside ground truth

Figure 6.16: MAP and posterior error
intervals from BAE model alongside ground

truth

The MAP estimate and posterior error intervals found with BAE are shown in Figure 6.16.
The MAP and posterior error intervals appear representative. Note that the MAP is furthest
from the ground truth, and the posterior error intervals are widest, around t = 5 and t = 15.

6.4 Computational Simplifications for BAE

The Bayesian Approximation Error framework involves a large amount of computations in the
offline stage. This section discusses the computational cost of BAE and how it can be reduced.

Recall that the MAP solution found with BAE is

xMAP,ε = min
x

{∥∥∥L̃ν|x(dt −Ax− µ̂ε|x)
∥∥∥2

2
+
∥∥∥L̃x(x)

∥∥∥2

2

}
(6.98)

=

(
L̃ν|x(A+ Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(dt − µ̂ε)

0nx,1

)
(6.99)

where

L̃Tν|xL̃ν|x = Γ−1
ν|x (6.100)

= (Γe + Γ̂ε − Γ̂εxΓ̂−1
x Γ̂xε)

−1 (6.101)
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which requires we compute

µ̂x̂ =
1

m

m∑
j=1

xj Γ̂x̂ =
1

m− 1
X̂X̂T − m

m− 1
µ̂x̂µ̂

T
x̂ (6.102)

µ̂ε̂ =
1

m

m∑
j=1

εj Γ̂ε̂ =
1

m− 1
Υ̂Υ̂T − m

m− 1
µ̂ε̂µ̂

T
ε̂ (6.103)

Γ̂εx =
1

m− 1
Υ̂X̂T − m

m− 1
µ̂ε̂µ̂

T
x̂ (6.104)

from samples. If we were to approach this “directly”, we would compute the matrix multipli-
cations for the sample statistics, then invert Γ̂x̂, then compute the other matrix multiplies and
additions to get Γν|x, then invert this matrix, then compute the factor L̃ν|x.

6.4.1 QR factorisation for BAE

Each sample εj requires an evaluation of Ā and A. This means that samples of ε “arrive”
relatively slowly, in the sense that a large number of computations are performed per sample.
The method proposed in this section was developed to compute the statistical quantities of
interest e.g. Γ̂ε|x in parallel with samples being generated.

It is worth noting that the methodology below was designed for BAE, but could be applied
to computing conditional statistics generally. In particular, this technique is useful when high
dimensional samples are arriving relatively slowly, allowing covariances and conditional co-
variances to be computed very quickly as soon as sampling is completed, or even while the
sampling is being performed. It is particularly useful when the sample statistical quantities of
interest are of low effective rank.

The method of this section makes use of the QR decomposition. More information on the
QR factorisation can be found in [32]. Note that typically slight variations such as pivoted QR
are used - we use the standard form here for clarity. Consider the sample matrix

X̂ = (x1, x2, . . . , xm) ∈ Rnx×m (6.105)

with QR factorisation

X̂ = Q̂x̂R̂x̂ (6.106)

where Q̂x̂ ∈ Rnx×nx with Q̂x̂Q̂Tx̂ = Q̂Tx̂ Q̂x̂ = Inx and R̂x̂ ∈ Rnx×m is upper triangular. In the
case that X̂ has rank rx < nx, only the top rx rows of Rx have nonzero elements. The “thin”
QR factorisation is

X̂ = Q̂x̂R̂x̂ =
(
Qx̂ Qx̂,null

)( Rx̂
0nx−rx,m

)
(6.107)

= Qx̂Rx̂ (6.108)
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where Qx̂ ∈ Rnx×rx has orthonormal columns and Rx̂ ∈ Rrx×m is upper triangular. Note that
the information of X̂ ∈ Rnx×m is encoded in Qx̂ ∈ Rnx×rx and Rx̂ ∈ Rrx×m, potentially
saving memory.

A useful aspect of the QR decomposition is that it can be computed as columns of the
matrix to be factorised arrive. Consider again X̂ . When x1 is computed, we can compute

Rx̂(1, 1) = ‖x1‖2 (6.109)

Qx̂(:, 1) = q1 =
x1

Rx̂(1, 1)
(6.110)

the first entry of Rx̂ and the first first column of Qx̂. When x2 arrives, we can compute

Rx̂(1, 2) = qT1 x2 (6.111)

Rx̂(2, 2) = ‖x2 −Rx̂(1, 2)q1‖2 (6.112)

Qx̂(:, 2) = q2 =
x2 −Rx̂(1, 2)q1

‖x2 −Rx̂(1, 2)q1‖2
(6.113)

and so on for x3, x4 up to xm. That is, perform Gram-Schmidt orthogonalisation on the samples
as they arrive. I use Gram-Schmidt here as it is simple and familiar, however other orthogonali-
sation methods such as those in [32] can be used. This is not necessarily the most efficient way
to factorise sample matrices, however the advantage is that the factorisation can be computed
in parallel with samples being computed.

I include a tolerance τ in the QR factorisation. This both reduces the numerical loss of or-
thogonality in Gram-Schmidt orthogonalisation and allows for reducing the rank of the approx-
imations through increasing the size of the tolerance. Suppose we already haveQx̂,rj ∈ Rnx×rj
and Rx̂,rj ∈ Rrj×j , the QR factorisation of the data matrix X̂j ∈ Rnx×j corresponding to the
first j samples. Note that rj ≤ j is the rank of X̂j . Now suppose sample xj+1 arrives. We
compute

Rx̂,rj (1 : rj , j + 1) = QTx̂,rjxj+1 (6.114)

ζ =
∥∥xj −Qx̂,rjRx̂,rj (1 : rj , j)

∥∥
2

(6.115)

where ζ is the residual. If ζ > τ , form the rank updated factorisation X̂j+1 = Qx̂,rj+1
Rx̂,rj+1

where

Qx̂,rj+1
=
(
Qx̂,rj qrj+1

)
∈ Rnx×rj+1 (6.116)

Rx̂,rj+1
=

(
Rx̂,rj (1 : rj , 1 : j) Rx̂,rj (1 : rj , j + 1)

01,j ζ

)
∈ Rrj+1×(j+1) (6.117)

where rj+1 = rj + 1 and

qrj+1 =
xj+1 −Qx̂,rjRx̂,rj (1 : rj , j + 1)

ζ
∈ Rnx . (6.118)
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Note that when τ > 0 is used while constructing the QR decomposition, X̂ ≈ Qx̂Rx̂. We state
X̂ = QxRx for notational simplicity.

Computing a QR factorisation with a tolerance is not unusual. However, in this thesis a
relatively large tolerance e.g. τ = 0.02Rx̂(1, 1) is typically used. This is done to reduce rx,
saving memory and reducing computations.

Rather than x, we consider the mean removed variable χ = x − µx. This is stored in the
mean removed data matrix

X = (χ1, χ2, . . . , χm) = (x1 − µx, x2 − µx, . . . , xm − µx) ∈ Rnx×m (6.119)

which is used to construct the covariance estimate

Γ̂x =
1

m
XXT ≈ Γ̂x̂ =

1

m− 1
X̂X̂T − m

m− 1
µ̂xµ̂

T
x (6.120)

i.e. we approximate the sample mean. Using the mean removed variable simplifies the algebra,
however Γ̂x is a biased estimate of Γx. Also, the QR factorisation X̂ = Qx̂Rx̂ tends to have the
top few rows of Rx̂ much larger than lower rows. This can lead to roundoff errors, especially
when computing e.g. Rx̂RTx̂ . In the case that the mean is not known exactly, an estimate based
on a smaller number of samples can be used instead.

Alternatively, construct

µ̂rx =
1

m

m∑
j=1

Rx(:, j) (6.121)

and form

Γx ≈
1

m− 1
Qx

(
RxR

T
x −mµ̂rx µ̂Trx

)
QTx (6.122)

i.e. a rank 1 downdate ofRxRTx . The above is an unbiased positive semidefinite estimate of the
covariance. Note that the above still uses the mean removed variable to avoid numerical errors.
For the problems considered in this thesis, µ̂rx was found to be negligible, so the downdate was
not applied.

The sample covariance of (mean removed) x is

Γx ≈ Γ̂x =
1

m
XXT =

1

m
QxRxR

T
xQ

T
x (6.123)

in terms of the QR decomposition of the (mean removed) data matrix. Note that the above QR
form of the covariance can be used as the first step in computing the SVD of Γ̂x [32]. Similarly
for Γ̂ε = 1

mQε,kε(Rε,kεR
T
ε,kε

)QTε,kε and Γ̂ε,x = 1
mQε,kε(Rε,kεR

T
x,kx

)QTx,kx . We can compute
these QR based factorisations as samples arrive, but once sampling is complete, these results
can also be used to help compute the more efficient SVDs if desired.
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The QR decomposition of the sample covariance matrix can be used to construct a reduced
basis as in Section 6.2. Let QTxx = ax ∈ Rrx be the variable of interest in the basis spanned
by the vectors qx,j ∈ Rnx , the columns of Qx. The covariance of ax is

Γax = QTxΓxQx (6.124)

≈ QTx Γ̂xQx (6.125)

= QTx (
1

m
QxRxR

T
xQ

T
x )Qx (6.126)

=
1

m
RxR

T
x = Γ̂ax (6.127)

noting that Γ̂ax ∈ Rrx×rx is full rank.
Now consider ε. Let

Υ = (ε1, ε2, . . . , εm) = QεRε (6.128)

be the thin QR decomposition of the mean removed sample matrix. Note Qε ∈ Rnd×rε where
rε is the (effective) rank of Υ. The sample covariance estimate of ε is

Γε ≈ Γ̂ε =
1

m
ΥΥT =

1

m
Qε,kεRε,kεR

T
ε,kεQ

T
ε,kε (6.129)

where we can instead consider QTε ε = aε ∈ Rrε similarly to QTxx = ax.
The sample estimate to the conditional covariance of ε given x is

Γε|x ≈ Γ̂ε|x = Γ̂ε − Γ̂εxΓ̂−1
x Γ̂xε (6.130)

however Γ̂−1
x only exists for rx = nx. Instead consider the conditional covariance of the

reduced basis variables

Γaε|ax ≈ Γ̂aε|ax = Γ̂aε − Γ̂aεaxΓ̂−1
ax Γ̂axaε (6.131)

=
1

m

(
RεR

T
ε −RεRTx (RxR

T
x )−1RxR

T
ε

)
(6.132)

where we note that only the products RxRTx , RεRTε and RxRTε need to be stored.
Recall that the posterior with BAE is of the form

π(x|d) ∝ exp
(∥∥∥L̃ν|x(d−A(x)− µ̂ν|x)

∥∥∥2

2
+Gx(x)

)
(6.133)

where Gx(x) comes from the prior, and L̃Tν|xL̃ν|x = Γ̂−1
ν|x = (Γe + Γ̂ε|x)−1. We also form

µ̂ν|x = µe + µε + Γ̂εxΓ̂−1
x (x− µx).
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Consider Γ̂εxΓ̂−1
x . Construct Γ̂x as

mΓ̂x =
(
Qx Qxn

)( RxR
T
x 0rx,nx−rx

0nx−rx,rx κ2
xInx−rx

)(
Qx Qxn

)
(6.134)

where rx is the (effective) rank of sample matrixX , Qx ∈ Rnx×kx andRx ∈ Rkx×m are found
by recursive QR. Qxn ∈ Rnx×(nx−rx) has columns spanning the rest of Rnx i.e. the orthogonal
complement of Qx. κx ∈ R is some small positive number. The above construction of Γ̂x is
analogous to ensuring regularity with a penalty subspace as described in Section 6.2.

The above form of Γ̂x implies

1

m
Γ̂−1
x =

(
Qx Qxn

)( RxR
T
x 0rx,nx−rx

0rx,nx−rx κ2
xInx−rx

)−1(
QTx
QTxn

)
(6.135)

=
(
Qx Qxn

)((RxR
T
x )−1 0rx,nx−rx

0nx−rx,rx
1
κ2
x
Inx−rx

)(
QTx
QTxn

)
(6.136)

= Qx(RxR
T
x )−1QTx +

1

κ2
x

QxnQ
T
xn (6.137)

= Qx(RxR
T
x )−1QTx +

1

κ2
x

(Inx −QxQTx ) (6.138)

= Qx

(
(RxR

T
x )−1 − 1

κ2
x

Irx

)
QTx +

1

κ2
x

Inx (6.139)

where we have made use of the fact that
(
Qx Qxn

)−1
=

(
QTx
QTxn

)
and QxnQ

T
xn = (Inx −

QxQ
T
x ). Note that the only inversion that needs to be explicitly calculated is of symmetric

RxR
T
x ∈ Rrx×rx .

The matrix Γ̂εxΓ̂−1
x can be expressed as

Γ̂εxΓ̂−1
x = QεRεR

T
xQ

T
x

(
Qx(RxR

T
x )−1QTx +

1

κ2
x

(Inx −QxQTx )

)
(6.140)

= QεRεR
T
xQ

T
xQx(RxR

T
x )−1QTx +

1

κ2
x

QεRεR
T
xQ

T
x (Inx −QxQTx ) (6.141)

= QεRεR
T
x (RxR

T
x )−1QTx (6.142)

noting that QTx (Inx −QxQTx ) = 0rx,nx . Note that the nullspace component from Γ̂−1
x cancels

out. The above states the linear correction Γ̂εxΓ̂−1
x ∈ Rnd×nx used in BAE as the product of

Qε ∈ Rnd×rx , RεRTx (RxR
T
x )−1 ∈ Rrε×rx and Qx ∈ Rnx×rx , potentially saving memory.
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Now consider the matrix Γ̂ε|x. This can be expressed as

mΓ̂ε|x = m

(
Γ̂ε − Γ̂εxΓ̂−1

x Γ̂xε

)
(6.143)

= QεRεR
T
ε Q

T
ε −QεRεRTx (RxR

T
x )−1QTxQxRxRεQ

T
ε (6.144)

= QεRεR
T
ε Q

T
ε −QεRεRTx (RxR

T
x )−1RxRεQ

T
ε (6.145)

= Qε

(
RεR

T
ε −RεRTx (RxR

T
x )−1RxRε

)
QTε (6.146)

where we have made use of our earlier result for Γ̂εxΓ̂−1
x . The covariance Γ̂ν|x can be expressed

as

Γ̂ν|x = Γe + Γ̂ε|x (6.147)

= Γe +
1

m
Qε

(
RεR

T
ε −RεRTx (RxR

T
x )−1RxRε

)
QTε (6.148)

= Γe +QεMε|xQ
T
ε (6.149)

where Mε|x ∈ Rrε×rε . Note that Γν|x is a rank rε addition to Γe.
Let Le be the Cholesky factorisation of Γe such that LeLTe = Γe. Computing Lν|x becomes

a problem of computing a rank rε update to Le. Methods of doing this are presented in e.g [32].
First, compute LM ∈ Rrε×rε such that

LML
T
M = M =

1

m

(
RεR

T
ε −RεRTx (RxR

T
x )−1RxRε

)
(6.150)

by e.g. Cholesky factorisation.
Let

Lν|x,nd+rε =
(
Le QεLM

)
∈ Rnd×nd+rε (6.151)

and note that

Lν|x,nd+rεL
T
ν|x,nd+rε

=
(
Le QεLM

)( LTe
LTMQ

T
ε

)
(6.152)

= LeL
T
e +QεLML

T
MQ

T
ε (6.153)

= Γe +QεMε|xQ
T
ε (6.154)

= Γ̂ν|x (6.155)

i.e. Lν|x,nd+rε is a factor of Γν|x.
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We can instead form Lν|x ∈ Rnd×nd such that Lν|xLTν|x = Γν|x as the Cholesky factor.
Lν|x can be found as the solution to

Q

(
LTe

LTMQ
T
ε

)
=

(
Lν|x

0rε×nd

)
(6.156)

where orthonormal Q is computed by e.g. Givens rotations, forming

Q = Qnd+1,1Qnd+1,2 . . . Qnd+1,ndQnd+2,1Qnd+2,2 . . . Qnd+kε,nd (6.157)

where Qj,k zeros the j’th row and k’th column of
(

LTe
LTMQ

T
ε

)
. This is the rank rε Cholesky

update algorithm as described in [32]. The matrix L̃ν|x such that

L̃Tν|xL̃ν|x = Γ̂−1
ν|x (6.158)

appears in the BAE posterior. If we computed Lν|x as a low rank Cholesky update to Le as
discussed above, we could form L̃ν|x = L−1

ν|x as

(L−1
ν|x)TL−1

ν|xΓ̂ν|x = (L−1
ν|x)TL−1

ν|xLν|xL
T
ν|x (6.159)

= (L−1
ν|x)T ILTν|x = (Lν|xL

−1
ν|x)T = I (6.160)

as required. Note that Lν|x as formed above is triangular, so L−1
ν|x can be computed efficiently

by e.g. back substitution.
There is an alternative means of computing a matrix L̃ν|x such that L̃Tν|xL̃ν|x = Γ̂−1

ν|x. First
note that

Γ̂−1
ν|x =

(
Γe +QεMε|xQ

T
ε

)−1

(6.161)

= Γ−1
e − Γ−1

e Qε

(
M−1
ε|x +QTε Γ−1

e Qε

)−1

QTε Γ−1
e (6.162)

by the matrix inversion lemma. First compute LM̂ ∈ Rkε×kε , the Cholesky factor such that
LM̂L

T
M̂

= M−1
ε|x + QTε Γ−1

e Qε. The inversion L−1

M̂
can be computed by back substitution. A

matrix L̃ν|x can then be formed as

L̃ν|x,i =

(
L̃Te

i(L−1

M̂
)TQTε Γ−1

e

)
(6.163)
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as

L̃Tν|x,iL̃ν|x,i =
(
L̃e iΓ−1

e QεL
−1

M̂

)( L̃Te
i(L−1

M̂
)TQTε Γ−1

e

)
(6.164)

= L̃eL̃
T
e + i2Γ−1

e QεL
−1

M̂
(L−1

M̂
)TQTε Γ−1

e (6.165)

= Γ−1
e − Γ−1

e Qε

(
M−1
ε|x +QTε Γ−1

e Qε

)−1

QTε Γ−1
e (6.166)

as required. Note that L̃ν|x,i ∈ C(nd+rε)×nd . I have not found the above form in the literature,
but I expect it is used as an intermediate step in proofs. While algebraically useful, I do not
recommend using the above complex number form. Instead,I recommend the Cholesky factor
L̃ν|x ∈ Rnd×nd such that L̃Tν|xL̃ν|x = Γ̂−1

ν|x computed as a rank rε Cholesky downdate. The
Cholesky downdate algorithm is described in [32], and is similar to the update in Equation
(6.156).

6.4.2 Recursive QR for BAE

When performing the sampling stage of BAE, it may be useful to know e.g. Γ̂ε while samples
are being computed. This can be useful for deciding when “enough” samples have been taken.
It is also possible to have quantities of interest e.g. Γν|x computed in parallel with sampling
being performed, saving overall computing time.

Suppose we have a set of m1 samples, and we have computed entities of interest e.g.
Γ̂(ε|x)1

, the conditional covariance of ε given x based on these first m1 samples. We then
generate an additional m2 samples, and wish to update these statistical quantities accordingly,
to reflect all m = m1 +m2 samples.

Consider

Γ̂εxΓ̂−1
x = QεRεR

T
x (RxR

T
x )−1Qx (6.167)

the linear part of the affine BAE correction. The factors Qε and Qx can be updated by concate-
nating new basis vectors q from the additional m2 samples. The product RεRTx can be updated
as

RεR
T
x =

(
Rε,m1Rε,m2

)(RTx,m1

Rx,m2

)
(6.168)

= Rε,m1R
T
x,m1

+Rε,m2R
T
x,m2

(6.169)

where the m1 and m2 subscripts denote that these came from the m1 or m2 samples respec-
tively. In the case that the effective ranks rx or rε are updated i.e. the corresponding Q gained
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rm2 columns, we form

RεR
T
x =

(
Rε,m1R

T
x,m1

0rε,m1 ,rx,m2

0rε,m2 ,rx,m1
0rε,m2 ,rx,m2

)
+Rε,m2R

T
x,m2

(6.170)

to keep the dimensions consistent.
The matrix (RxR

T
x )−1 can be expressed as

(RxR
T
x )−1 =

((
Rx,m1Rx,m2

)(RTx,m1

Rx,m2

))−1

(6.171)

=

((
Rx,m1R

T
x,m1

0rx,m1 ,rx,m2

0rx,m2 ,rx,m1
0rx,m2 ,rx,m2

)
+Rε,m2R

T
x,m2

)−1

(6.172)

=

(
Mx,m1 +Rx,m2R

T
x,m2

)−1

(6.173)

where we note that

M †x,m1
=

(
(Rx,m1R

T
x,m1

)−1 0rx,m1×rx,m2

0rx,m2×rx,m1
0rx,m2×rx,m2

)
. (6.174)

The matrix (pseudo)inversion lemma [107] is applied to form

(RxR
T
x )−1 =

(
Mx,m1 +Rx,m2R

T
x,m2

)−1

(6.175)

= M †x,m1
−M †x,m1

Rx,m2(RTx,m2
Rx,m2 + Im2)−1RTx,m2

M †x,m1
(6.176)

where we note that (Rx,m1R
T
x,m1

)−1 is reused, and the only inverse that needs to be calculated
is (RTx,m2

Rx,m2 + Im2)−1 ∈ Rm2×m2 . The inversion for the m2 = 1 case i.e. continually
updating, is particularly straightforward. By constantly updating i.e. having small m2, the
BAE correction Γ̂εxΓ̂−1

x is computed almost immediately after sampling concludes.
Other sample enntities of interest e.g.

Γ̂ε|x = QεMε|xQ
T
ε (6.177)

can be formed similarly e.g. making rank m2 updates of

Mε|x =
1

m

(
RεR

T
ε −RεRTx (RxR

T
x )−1RxR

T
ε

)
(6.178)

similar to updating (RxR
T
x )−1 andRεRTx as shown above. This allows the quantities of interest

in BAE to be computed in a compressed form almost immediately after sampling concludes.
The proposed combination of computing QR factors of sample matrices as samples are

generated with a tolerance to reduce rank, and using the QR factors to compute sample statistics
of interest e.g. Γ̂εxΓ̂−1

x = QεRεRx(RxR
T
x )−1QTx , and computing these entities iteratively is

referred to in this thesis as recursive QR. Recursive QR is used in Chapters 8, 9 and 10.
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6.4.3 Example: 1D Deconvolution

Consider the 1D deconvolution problem approached with BAE from Section 6.3.3. In this
section recursive QR is incorporated into the solution scheme.

Samples x̄j , z̄j and ξ̄j are drawn as in Section 6.3.3. These samples are used to compute
xj = Px̄j and εj = Ā(x̄j , z̄j , ξ̄j) − Axj . As each sample arrives, Qx, Qε, RεRTε , RxRTx
and RεRTx are computed as described in Section 6.4.2. I used tolerances τx = 0.01 on the X
samples for QR decomposition and τε = 0.01 on the ε samples. This gave nx = rx = 51 and
51 = nε > rε = 40. The effective ranks are high relative to the problem dimension, however
the problem dimensions are relatively low due to BAE.

For this example, I let m = 200 samples be drawn before computing

(RxR
T
x )−1 (6.179)

RεR
T
x (RxR

T
x )−1 (6.180)

Γ̂εxΓ̂−1
x = QεRεR

T
x (RxR

T
x )−1QTx (6.181)

Mε|x =
1

m

(
RεR

T
ε −RεRTx (RxR

T
x )−1(RεR

T
x )T

)
(6.182)

LM = Chol(M) (6.183)

i.e. I do not recursively update these quantities. I then compute(
Lν|x
0rε,nd

)
= Q

(
LTe

LTmQ
T
ε

)
(6.184)

L̃ν|x = L−1
ν|x ∈ Rnd×nd (6.185)

where Q is a product of Givens rotations. Note that the inversion can be performed by back
substitution.

The model in this problem is of the form d = Ax+ ε+ e where x and e are normally dis-
tributed independent variables, and ε is approximated as conditionally normal on x. Consider
a particular realisation dt = Axt + εt + et. The MAP estimate of xt given dt is

xMAP = min
x

{∥∥∥∥L̃ν|x(dt −Ax− Γ̂εxΓ̂−1
x x− µ̂ε − µe

)∥∥∥∥2

2

+
∥∥∥L̃xx∥∥∥2

2

}
(6.186)

=

(
L̃ν|x(A+ Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(dt − µe − µ̂ε)

0nx,1

)
(6.187)

and the posterior covariance is

Γx|d = (Γ−1
x +ATΓ−1

ν|xA)−1 (6.188)
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Figure 6.17: MAP estimate with posterior
error estimates found with BAE and recursive

QR alongside the ground truth

Figure 6.18: MAP estimate with posterior
error estimates found with standard BAE

alongside the ground truth

where we note that Γ−1
x and L̃x came from the prior, not samples.

The estimates found with BAE and recursive QR are shown in Figure 6.17. The BAE es-
timates found without recursive QR are shown in Figure 6.18. The MAP estimates are quite
similar, although the recursive QR solution is slightly more “jagged”. The posterior error esti-
mate with recursive QR is slightly narrower, but still representative. The recursive QR posterior
error estimates appear narrower than they really are due to the “jagged” MAP estimate.

I recomputed the estimates with τx = 1 and τε = 0.4. This results in kx = 36 and
kε = 22. The associated estimates are shown in Figure 6.19. Note that the solution seems
overly nonsmooth, and the posterior error intervals are too narrow to represent the ground truth.
While the tolerances seem to have been too large in this example, the estimates in Figure 6.19
are still more representative than the estimates seen in Figure 6.15, which ignore approximation
error.

6.5 Analytical Decompositions of Priors

This section reviews some useful analytical results for commonly used covariance functions.
In [93], the eigenvalues and eigenvectors of a Gaussian smoothness prior covariance in 1D are
expressed analytically. This allows useful aspects of the covariance e.g. the rank, Lx and L̃x
to be “computed” efficiently.

Similarly, analytical eigendecompostions exist for a variety of covariance functions in hy-
percubes, see [73]. It is worth noting that these are often derived for continuous forms of the



122 CHAPTER 6. COMPUTATIONAL METHODS

Figure 6.19: MAP estimate with posterior error estimates found with BAE and recursive QR
with τx = 1 and τε = 0.4 alongside the ground truth

domain, using a PDE formulation of the prior. Such formulations could potentially be used
to phrase the eigenproblem in a way that is solved by e.g. FEM rather than constructing the
covariance and using linear algebra techniques. This concept is discussed further in [94].

I stress that the analytical results mentioned above only exist for very narrowly defined
problems. Having the analytical eigendecomposition for a homogeneous smoothness prior on
a rectangle can be useful at early stages of analysis. If we were instead to use a structured prior
or a nonrectangular domain, analytical results are not available.

6.6 Randomised Compression

The matrices considered in inverse problems can be prohibitively large, motivating the use of
compressed approximations e.g. thin SVD. A framework that has seen recent popularity is
randomised compression. This section primarily considers the recent landmark paper [37].

Consider A ∈ Rnd×nx . If nd and/or nx are extremely large, computations involving A
become prohibitively computationally expensive. For example, A may be so large that it does
not fit in fast (e.g. RAM) memory. A decomposed form ofA e.g. the thin SVDA = UrtDrtV

T
rt

may be more useful. For example, it may be that the thin SVD fits in fast memory while A
does not. It is also trivial to compute the pseudoinverse of A once the thin SVD is known.
Approximate decompositions e.g. the tSVD A ≈ Ar = UrDrV

T
r may similarly be useful.

The use of factorisations for linear algebraic tasks is widespread [108, 109]. The idea of
using a randomised method for factorising a large matrix has existed for some time, for example



6.6. RANDOMISED COMPRESSION 123

randomly selecting a few rows and/or columns of a matrix and treating this as representative
[110, 111, 112]. More recent methods consider the product of A with a random test matrix W .
This concept is explored thoroughly in [37]. In this thesis, compression based on analysis of
AW is called randomised compression. Randomised compression has similarities to subspace
iteration with a randomised initial subspace, a common method in linear algebra reviewed in
[32]. Key papers in the development of randomised compression are [112, 113, 114].

Consider computing the r term thin SVD of A ∈ Rnd×nx . A method proposed in [37] is:

1. Form white noise test matrix W ∈ Rnx×2r i.e. W (j, k) ∼ N (0, 1) for all j, k.

2. Form Y = (AAT )qAW with q = 1, 2 by multiplying alternately with A and AT e.g. for

q = 1, Y = A

(
AT (AW )

)
. Note that Y ∈ Rnd×2r.

3. Construct orthonormal Q that spans columns of Y e.g. Y = QR. Note Q ∈ Rnd×r̂
where r̂ ≤ 2r is the effective rank of Y .

4. Form B = QTA. Note that B ∈ Rr̂×nx .

5. Compute the r term thin SVD B = ŨrDrV
T
r where r ≤ r̂.

6. Set Ur = QŨr

and thus A ≈ UrDrV
T
r . The above is known as the randomised SVD algorithm. Methods

of computing other factorisations are also discussed in [37], where steps 1-3 are largely the
same. Methodological refinements are also provided in [37] to e.g. reduce roundoff errors. An
initial methodological improvement proposed in this thesis is that Y = QR can be computed
by recursive QR as described in Section 6.4.1.

The above methodology has some distinct advantages. Namely, the algorithm is simple to
parallelise, and the matrix A only needs to be streamed through fast memory 2(q + 1) times.
Each computation of a matrix-matrix product is a called a pass of A. For example, computing
the SVD as described in the above steps with q = 0 is a 2 pass algorithm.

6.6.1 Localised Compression

Consider A ∈ Rnd×nx . Let Ac = UrDrV
T
r ≈ A be the low rank SVD approximation to A. A

typical quantification of the quality of a matrix approximation would be

‖A−Ac‖2 = max
x:‖x‖2=1

‖Ax−Acx‖2 (6.189)

i.e. the difference in matrix 2-norm/the largest singular value of the difference. Such a measure
of approximation quality is natural if the aim is to have Ax ≈ Acx for all x ∈ Rnx . In this
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section, I consider forming Ac such that Aa ≈ Acx when x is known to more likely be in a
subset of Rnx .

Suppose we wish to approximate the matrix

A =

(
1 2
3 4

)
(6.190)

that is, find someAc such thatAx ≈ Acx. However, we may know that x is always of the form
x = (x(1), 0)T . In this case, the approximation Ac only needs to be valid in the 1 dimensional
subspace x exists in. In this case, the product Ax is always of the form

Ax =

(
1 2
3 4

)(
x(1)

0

)
=

(
x(1)
3x(1)

)
(6.191)

so a valid approximation is

Ac =

(
1 0
3 0

)
(6.192)

which I term the local approximation of A. The accuracy of the approximation, quantified as
||Ax−Acx||2, is shown in Figure 6.20. Note that ||Ax−Acx||2 = 0 along x(2) = 0.

Figure 6.20: Comparing A and local approximation Ac

Consider the randomised compression of [37]. Instead of a white noise matrix

W = (w1, w2, . . . , w2r) ∈ Rnx×2r (6.193)

where wj is a sample of w ∼ N (0nx , Inx), I propose using a sample matrix

X = (x1, x2, . . . , x2r) ∈ Rnx×2r (6.194)
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where xj is a sample of x ∼ πx(x). I refer to approximations Ac,w found by considering the
action of A on W as global sample approximations, as Ac,w would be expected to be “equally
accurate” for all x ∈ Rnx (relative to the norm of x). I refer to approximations Ac,x found by
considering the action of A on X as local sample approximations, as Ac,x would be expected
to be accurate for x ∼ πx(x).

An example of a local approximation is the conditional mean. The conditional mean µy|x
approximates y = A(x) as y ≈ µy|x i.e.

A(x) ≈ µy + ΓyxΓ−1
x (x− µx) (6.195)

where the approximation is exact for normally distributed x with defined Γ−1
x and linear A.

Note that the CM is an affine approximation. The sample conditional mean

µy|x ≈ µ̂y|x = µ̂y + Γ̂yxΓ̂−1
x (x− µ̂x) (6.196)

is a local sample approximation to A(x). Note that the sample conditional mean is constructed
just from samples of x and y, and can be constructed for nonlinear A and non-Gaussian x.

Recall that the methods in [37] used a white noise matrix W for sampling. That is, we treat
x ∼ N (0nx,1, Inx). The conditional mean in this case is

µy|x = µy + ΓyxΓ−1
x (x− µx) (6.197)

= Aµx + ΓyxI
−1
nx (x− µx) (6.198)

= Γyxx (6.199)

as µx = 0nx,1 and I−1
nx = Inx . The cross covariance Γyx is

Γyx = E
(

(y − µy)(x− µx)T
)

(6.200)

= E(AxxT ) = AE(xxT ) (6.201)

= A (6.202)

i.e. the conditional mean approximation to a linear operator, assuming a white noise prior, is
identical to the linear operator.

Consider the 1D convolution problem of Section 2.3.2, modelled as d = Ax+ e. Consider
the sample conditional mean used as a global sample approximation. First compute Yw = AW
where W (:, j) = wj , a sample of w ∼ N (0nx,1, Inx). This is used to compute

Ac,w = Γ̂ywwΓ̂−1
w (6.203)

= QywRywRw(RwR
T
w)−1QTw (6.204)
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where QR factorisation of sample matrices is performed as described in Section 6.4.1. Note
that Ac,wxt = µ̂y|w=xt , the “zero mean” conditional mean. In this thesis, factorised forms of
sample approximations are referred to as sample compressions.

Let x ∼ πx(x) = N (0nx,1,Γx) where πx(x) is a smoothness prior (specifically the
smoothness prior used in Section 5.1.1). I compute sample matrix X = LxW where LxLTx =
Γx. I also compute Yx = AX = ALxW . I factorise Yx = QyxRyx and X = QxRx as
described in Section 6.4.1. I then form the local sample approximation/compression

Ac,x = QyxRyxRx(RxR
T
x )−1QTx (6.205)

the equivalent approximation to Ac,w but constructed from X and Yx rather than W and Yw.
I construct the approximations Ac,w as in Equation (6.203) and Ac,x as in Equation (6.205)

to the convolution operator A ∈ R51×201 of Section 2.3.2. I form approximations from 20, 50,
100 and 200 samples. I compare the “accuracy” by plotting Axt, Ac,wxt and Ac,xxt alongside
each other, where xt is a draw of x. These are shown in Figures 6.21 through 6.24. I also
plot Awt, Ac,wwt and Ac,xwt where wt is a draw of w ∼ N (0nx,1, Inx). These are shown
in Figures 6.25 through 6.28. Note that for the same number of samples, ‖Ac,xxt −Axt‖ <
‖Ac,wxt −Axt‖ and ‖Ac,xwt −Awt‖ < ‖Ac,wwt −Awt‖ i.e. for this problem, the proposed
method of local sample approximations outperforms the global sample approximation.

The approximations of Equation (6.203) and Equation (6.205) are computed with a single
pass ofA. I now compute approximations with the 2(q+1) pass randomised SVD algorithm of
[37]. I take q = 1. LetAc,w be computed from Yw = A(AT (AW )) andAc,x be computed from
Yx = A(AT (AX)). I consider r = 15 and r = 25 i.e. W,X ∈ R201×30 and W,X ∈ R201×50.
The products Awt, Ac,xwt, Ac,wwt, Axt, Ac,xxt and Ac,wxt for r = 15 and r = 25 are
shown in Figures 6.29 to 6.32. Note that the local sample approximation Ac,x appears to be a
better approximation to A. For this problem, the proposed extension to [37] of local sample
approximations found by using samples xj of x ∼ πx(x) better approximates both Ax and
Aw.

6.6.2 Sample Approximations and Matrix Free Methods

Sample based approximation methods are useful for creating an approximation to an operator
A when only the action of A i.e. y = A(x) can be accessed. Suppose we wanted the matrix
approximation A of the linear operator A where A(x) is computed using matrix free methods
or black box software. What is sometimes done in practice for linear A is to compute A “row
by row”, forming A(i, :) = A(ei) where ei ∈ Rnx is the i’th identity vector. This construction
involves nx evaluations of A. It may also be that a compressed approximation Ac ≈ A is
desired.

Rather than “row by row”, I propose constructing a local sample approximation Ac to A.
This involves computing A(xj) where xj ∈ Rnx is a draw of x ∼ πx(x), as opposed to the
“row by row” method, which involves computing A(ei).
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Figure 6.21: Sample approximations from 20
samples

Figure 6.22: Sample approximations from 50
samples

Figure 6.23: Sample approximations from 100
samples

Figure 6.24: Sample approximations from 200
samples

The methods of [37] are multipass methods, requiring the ability to compute ATx and
QTA. In the case of matrix free methods, we may not be able to compute these quantities. We
shall instead discuss the single pass “conditional mean” approximation i.e. A(x) ≈ Ac(x) =
µ̂y|x.

Let Y = (y1, y2, . . . , ym) and X = (x1, x2, . . . , xm) be m sample data matrices with
yj = A(xj) and QyRy and QxRx are mean removed QR factorisations. A local sample
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Figure 6.25: Sample approximations from 20
samples

Figure 6.26: Sample approximations from 50
samples

Figure 6.27: Sample approximations from 100
samples

Figure 6.28: Sample approximations from 200
samples

approximation Ac can be formed as

Ac(x) = µ̂y|x = µ̂y + Γ̂yxΓ̂−1
x (x− µ̂x) (6.206)

= µ̂y +QyRyR
T
x (RxRx)−1QTx (x− µ̂x) (6.207)

which is the affine single pass local sample approximation toA(x). Recall thatQx,Qy,RyRTx ,
RxR

T
x and (RxRx)−1 can all be computed as samples yj = A(xj) are being generated, as

described in Section 6.4.2. This allows Ac to be formed almost immediately after the final
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Figure 6.29: Sample SVD approximation,
r = 15, 30 samples, 4 passes

Figure 6.30: Sample SVD approximation,
r = 25, 50 samples, 4 passes

Figure 6.31: Sample SVD approximation,
r = 15, 30 samples, 4 passes

Figure 6.32: Sample SVD approximation,
r = 25, 50 samples, 4 passes

sample ym is computed. Note that theAc as formulated in Equation (6.206) is identical to using
the BAE framework with Ā(x̄, z̄, ξ̄) = Ā(x) and having “approximate” model A(x) = 0nd,1.

Consider the accuracy of this approximation. When using recursive QR with a tolerance
τ , we know that ||A(xj) − Acxj ||22 < τ by construction. This is an important consideration
when choosing τ . When evaluating the quality of the approximation as ||A(xj)−Acxj ||2 with
j > m i.e. prior draws not used in the sample approximation. The aim is to choose m so large
that the prior is “exhausted” in the sense that ||A(xj) − Acxj ||22 < τ for any xj drawn from
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πx(x).
Note that Ac as formulated in Equation (6.206) can be formed even for nonlinear A. It

could be that A is “sufficiently linear” for x “sufficiently likely” i.e. ‖A(x)−Acx‖2 is ac-
ceptably small when πx(x) is acceptably large. This is a problem specific judgement call, and
depends on how strict πx(x) is, and how linearly A behaves in the support of πx(x). The non-
linear problem of Chapter 10 is approximated effectively with a local sample approximation
similar to that of Equation (6.206).

Let the local sample approximation around x = x0 be expressed as

A(x) ≈ A(x0) +Ac(x− x0). (6.208)

Compare this with the 1 term Taylor expansion about x0,

A(x) ≈ A(x0) + Jx0(x− x0). (6.209)

It then follows that the Jacobian can be approximated with a local sample approximation i.e.
take Jx0 ≈ Ac. This is potentially useful when samples yj = A(x0 + xj) can be computed
rapidly, but explicitly forming J is slow. Approximating the Jacobian with a sample approxi-
mation is conceptually similar to the ensemble smoother [115, 116]. The ensemble smoother is
a sample approximation of the forward operator Jacobian. The local sample approximation is
simple to interpret and allows for improvements such as incorporating the adjoint and making
additional model passes. I also incorporate recursive QR to the local sample approximation to
arrive at a low rank approximation.

Consider the nonlinear operator y = A(x) =exp(−x
2 ) with nx = ny = 1. Let x ∼

N (µx, σ
2
x) = N (3, 1). The Jacobian based approximation is A(x) ≈ AJ(x) = A(µx) +

Jµx(x− µx). While this makes sensible use of our knowledge of µx, it ignores any additional
knowledge of the prior. The single pass sampling approach would be to draw several xj from
π(x), compute yj = A(xj) and form the approximation A(x) ≈ Ac(x) = µ̂y + Γ̂yxΓ̂−1

x (x −
µ̂x). These approximations are shown in Figure 6.33 alongside the “true” y = A(x). The
errors in the approximations are shown in Figure 6.34.

6.7 Combining Local Approximatons and BAE

Let d = Ā(x̄, z̄, ξ̄) + e, and suppose samples x̄j , z̄j , ξ̄j and xj can be drawn, where x is a
sufficient resolution approximation of the unknowns of interest. Let dt = Ā(x̄t, z̄t, ξ̄t)+et be a
particular realisation. We wish to estimate xt = Px,x̄x̄t from dt. A potentially computationally
efficient method would be to construct a locally accurate model A†c ∈ Rnx×nd such that the
estimate of xt can be computed as xt ≈ xlc = A†cd. In this section, a method of constructing
A†c using concepts from BAE and sample approximations is proposed. This method can be
applied to nonlinear Ā and non-Gaussian priors.
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Figure 6.33: Some linear approximations Figure 6.34: Errors in approximations

The conceptually simplest method is to construct A†c(dt) = µ̂x|d=dt entirely from samples
dj = Ā(x̄j , z̄j , ξ̄j) + ej and xj = Px,x̄x̄j . That is, we compute QdRd and QxRx from mean
removed samples dj and xj , then form the estimate

xt ≈ µ̂x|d=dt = A†c(dt) = µ̂x +QxRxR
T
d (RdR

T
d )−1(d− µ̂d). (6.210)

Note that this estimator is constructed with samples from the accurate model Ā(x̄j , z̄j , ξ̄j).
Such samples are computed in BAE, so the above estimator can be constructed while attempting
BAE with minimal additional computations. It may also be worthwhile to construct other
approximations e.g Ac̄(x̄), a higher dimensional affine approximation to Ā. This allows us to
assess the importance of e.g. nonlinearity, additional unknowns, etc. If we compute the linear
inverse models A†c, we can also see “cheaply” how inversions may behave.

Incorporating BAE into sample approximation effectively replaces the forward mapping
Ac(x) with

Ac(x) + µ̂ε + Γ̂εxΓ̂−1
x (x− µ̂x). (6.211)

Recall that samples εj = Ā(x̄j , z̄j , ξ̄j)−Ac(xj) are used in constructing µ̂ε|x and samples yj =
Ā(x̄j , z̄j , ξ̄j) = εj + Ac(xj) are used in constructing Ac. The forward model approximated
with a single pass approximation Ac and BAE can be expressed as

y = Ā(x̄, z̄, ξ̄) ≈ Ac(x) + µ̂ε|x (6.212)

= µ̂y + Γ̂yxΓ̂−1
x (x− µ̂x) + µ̂ε + Γ̂εxΓ̂−1

x (x− µ̂x) (6.213)

= µ̂y + (Γ̂yx + Γ̂εx)Γ̂−1
x (x− µ̂x) (6.214)
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where the same samples are used for computing Ac and µ̂ε|x. A consequence of sharing sam-
ples is that µ̂ε = 0nd,1 and Γ̂εx = 0nd,nx . In other words, the forward models y = Ac(x),
y = Ac(x)+ µ̂ε|x and y = µ̂ε|x i.e. BAE with theA = 0nd,nx model, will all be the same when
computed from the same samples.

Consider the model d = Ac(x)+ewhereAc is a model approximation such as described in
Equation (6.205) and x and e are normally distributed independent variables. Let a realisation
be dt = Ac(xt) + et. The MAP estimate xc,MAP,ε=0 of xt from dt can be computed as

xc,MAP,ε=0 =

(
L̃eAc
L̃x

)†(
L̃e(d− µe)
L̃xµx

)
(6.215)

i.e. the approximation can be naturally substituted in like any other model A. Consider the
BAE model d = Ac(x) + µ̂ε|x + e. The MAP estimate xc,MAP of xt given dt with BAE is

xc,MAP =

(
L̃ν|x(Ac + Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(d− µe − µ̂ε + Γ̂εxΓ̂−1

x µx)

L̃xµx

)
(6.216)

recalling that the quantities L̃ν|x and L̃ν|x are found by sampling. So while combining BAE
and local sample approximations may not change the forward predictions, the MAP estimate
will be changed. The uncertainty estimates are also changed when incorporating BAE.

I combine local sample approximation and BAE for the 1D deconvolution problem of Sec-
tion 2.3.2. This analysis is similar to the example of Section 6.3.3 but with a higher noise vari-
ance σ2

e and incorporating a local sample approximation model. Recall that x̄ is a fine discreti-
sation on [5, 15] while z̄ is a fine discretisation on [0, 5) and (15, 20]. Let s̄ = (x̄T , z̄T )T . The
kernel ξ̄ is the true convolution kernel. Let e ∼ N (µe = 0nd,1,Γe = σ2

eInd) with σe = 0.1,
approximately 10% noise level. Let πs̄(s̄) be a Gaussian smoothness prior. I estimate xt, a
coarse discretisation on [5, 15], from data dt. Shown in Figure 6.35 is a draw s̄t from the prior
on s̄, as well as a particular evaluation c̄t = F̄ (x̄t, z̄t, ξ̄t) where F̄ is the “physics” convolution
model. The data dt = Ā(x̄t, z̄t, ξ̄t) + et is shown in Figure 6.36. The covariance Γe is visu-
alised in Figure 6.37 and the covariance Γν|x = Γe + Γε|x is visualised in Figure 6.38. Note
the colourbars. Note the variance of Γν|x is greater for nodes corresponding to around t = 5
and t = 15.

The accurate forward predictions Ā(x̄t, z̄t, ξ̄t), the local sample approximation forward
predictions Ac(xt) and the BAE corrected forward predictions Ac(xt) + µ̂ε|x=xt are shown
in Figure 6.39. Note that the local sample predictions and the BAE corrected predictions are
the same i.e. µ̂ε|x = 0nd,1 as predicted when Ac is a single pass approximation and µ̂ε|x is
constructed from the same samples.

The MAP estimate with 3σ̂ posterior error intervals found with BAE and a local sample
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Figure 6.35: Unconvolved s̄t and convolved
c̄t = F̄ (x̄t, z̄t, ξ̄t)

Figure 6.36: Model predictions and simulated
data

Figure 6.37: Noise covariance Γe Figure 6.38: Conditional combined error
covariance Γν|x

approximate model are shown in Figure 6.40. These were computed as

xMAP =

(
L̃ν|xAc
L̃x

)†(
L̃ν|xd

L̃xµx

)
(6.217)

and σ̂2 is the diagonal of

Γx|d = (Γ−1
x +ATc Γ−1

ν|xAc)
−1 (6.218)
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Figure 6.39: Accurate, approximate, and BAE
corrected approximate forward model

predictions

Figure 6.40: Estimate with posterior error
intervals using BAE and local sample

approximate model

as in Section 6.3.3 but using local sample approximation Ac rather than A.
The sample conditional mean µ̂x|d=dt can also be used as an estimate of xt given data dt.

The sample conditional mean can be expressed as a single pass local sample approximation of
the mapping from d to x. Samples are computed as

dj = Ā(x̄j , z̄j , ξ̄j) + ej (6.219)

where x̄j , z̄j , ξ̄j and ej are draws. The estimate is

µ̂x|d=dt = µ̂x + Γ̂xdΓ̂
−1
d (dt − µ̂d) (6.220)

= µ̂x +QxRxR
T
d (RdR

T
d )−1Qd(dt − µ̂d) (6.221)

making use of the QR factorisation as described in Section 6.4.1. Note that the only compu-
tationally costly aspect of constructing this estimate is computing the samples. The QR form
is compressed, giving computationally efficient estimates at the online phase. The posterior
covariance is

Γx|d = (Γ−1
x + Γ̂xdΓ̂

−1
d Γ̂dx)−1 (6.222)

≈ Γ̂x − Γ̂xdΓ̂
−1
d Γ̂dx (6.223)

= Qx(RxR
T
x −RxRTd (RdR

T
d )−1RdR

T
x )QTx (6.224)

where the QR form is compressed and can be available immediately as samples arrive by using
recursive QR as described in section 6.4.2. The QR form can be used to form σ̂ “element
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by element”, to avoid explicitly forming Γx|d ∈ Rnx×nx , which is potentially too large to fit
explicitly in memory.

Figure 6.41: “Direct” single pass construction of A†c reconstructing x.

I apply the single pass local sample approximation approach as described above to the
1D deconvolution problem of Section 2.3.2, using the “fine” and “coarse” approximations of
Section 6.3.3. The results are shown in Figure 6.41.

6.8 BAE and Sampling Compression for Other Regularisation Schemes

There may be a “natural” basis for unknowns x e.g. pixels in an image. It is natural to impose
a prior e.g. smoothness in this basis based on correlation in that basis. However, there may be
a more computationally efficient basis for a given problem.

This section considers the 1D deconvolution problem of Section 2.3.2, but expressed in the
Fourier basis. I show that that a Gaussian smoothness prior, BAE and local sample approxima-
tions can still be applied.

Recall that the deconvolution problem can be stated as

d = A(x, z, ξ) + e = M

(∫ ∞
∞

ξ(t− τ)s(τ)dτ

)
+ e (6.225)

= M(B(s(t))) + e = M(c(t)) + e (6.226)

where M is the mapping to measurement points, ξ is the kernel, s(t) =

(
x(t)
z(t)

)
is the uncon-

volved signal, B is the convolution operator, and c(t) is the convolved signal. The convolution
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theorem [80, 81] states that the convolution operator can be expressed as

B(s(t)) =

∫ ∞
∞

ξ(t− τ)s(τ)dτ (6.227)

= F−1

(
F(ξ(t))�F(s(t))

)
(6.228)

= F−1

(
g(t)�F(s(t))

)
(6.229)

= C(s(t)) (6.230)

where F(s(t)) is the Fourier transform of s(t), g(t) is the Fourier transform of ξ(t) and �
denotes elementwise multiplication. We refer to B as the integral form of the convolution
operator, and C as the Fourier form. An advantage of the Fourier form is that evaluating
(discrete) Fourier transforms, and their inverse, can be performed rapidly. More specifically
the fast Fourier transform (FFT) algorithm allows the discrete Fourier transform of a signal

in Rn can be computed in O
(
nlog(n)

)
flops, as can the inverse discrete Fourier transform

[32, 80, 81]. Note that the Fourier form assumes circularity, while the integral form assumes a
zero signal outside Ω.

A means of solving the deconvolution problem using Fourier transforms is to model the
system as

d = e+ F−1

(
F(ξ)�F(x)

)
(6.231)

noting that ξ and x are on the same discretisation as d i.e. nx = nd, hence the lack of measure-
ment mapping M . The Fourier inverse estimate x−1

f of xt given data dt is

x−1
f = F−1

(
F(dt)�F(ξ)

)
(6.232)

where � denotes elementwise division. Equivalently,

x−1
f = F−1

(
F(dt)� g̃ξ,0

)
(6.233)

where g̃ξ,0(j) = 1(
F(ξ)

)
(j)

. In the case that
(
F(ξ)

)
(j) = 0 for some j, the Fourier pseudoin-

verse estimate x†f of xt is computed as

x†f = F−1

(
F(dt)� g̃ξ

)
(6.234)
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Figure 6.42: Model predictions and simulated
data

Figure 6.43: Unregularised Fourier solution

where g̃ξ(j) = 1(
F(ξ)

)
(j)

for j such that
(
Fnd(ξ)

)
(j) 6= 0, and g̃ξ(j) = 0 for j such that(

F(ξ)
)
(j) = 0.

Let Ā(x̄, z̄, ξ̄) be the “accurate” model of Section 6.3.3. Let

A(x) = F−1

(
F(ξ)�F(x)

)
= F−1

(
g �F(x)

)
(6.235)

be the approximate Fourier model. Note that the accurate model is integral form, has padding,
is on a finer discretisation, and uses the exact kernel. The forward predictions of the accurate
and approximate models are shown on Figure 6.42 alongside simulated data dt. The ground
truth xt ∈ Rnx with nx = nd = 51 is plotted alongside the Fourier pseudoinverse estimate

x†f = F−1

(
g̃ξ � F(dt)

)
in Figure 6.43. The Fourier pseudoinverse seems to perform about

as badly as the regular pseudoinverse estimate.
Let xf,g be an estimate of xt computed in the Fourier domain as

xf,g = F−1

(
F(dt)� g

)
(6.236)

where g ∈ Rnx is the filter. Estimates xf,g can be computed in O(nlog(n)) flops using fast
Fourier transforms. Compare xf,g with the MAP estimate xMAP with Gaussian x and e com-
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puted with the integral model B as

xMAP =

(
L̃eB

L̃x

)†(
L̃e(dt − µe)

L̃xµx

)
(6.237)

= Â†d̂t. (6.238)

Note that computing xMAP requires O(n2
x(nd + nx)) flops at the offline phase to compute Â†

with standard algorithms, andO(nx(nd+nx)) flops at the online phase to estimate xt from dt.
Estimates with the form of xf,g are comparatively computationally cheap.

A common construction of filters g is gf (j) = f(j)
(Fξ)(j) where f is the filter function. A

common example is the “box” filter, shown in Figure 6.44. We refer to this filter function f as
f = b. The effect of this filter is to remove high frequencies from the solution. The motivation
for the box filter is that the ground truth xt has relatively large low frequency components
relative to et. Applying the box filter is analogous to truncated series expansion, and to the
MAP solution where we implement an infinite prior penalty on high frequency terms. The
solution found with the box filter is shown in 6.45. Other filter functions can be used e.g. a
“triangle” (or Bartlett window) rather than a box, but the idea remains the same [56, 79, 81].

Figure 6.44: Box filter function b Figure 6.45: xt and box filter Fourier estimate
xf,b

Recall that the standard Tikhonov solution for a problem modelled as

d = Ax+ e = UDV Tx+ e (6.239)

can be found as

xtik = V D†tikU
Td (6.240)
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where Dtik(j, j)† =
dj

d2
j+α

2 where the penalty parameter α can be estimated by e.g. Morozov

discrepancy principle or L-Curve criterion. The Fourier inverse estimate can be stated as

xf = FG†F ∗ (6.241)

where G is a diagonal matrix with G(j, j) =
(
F(ξ)

)
(j). We can take inspiration from

Tikhonov regularisation and form diagonal G†tik(j) = G(j,j)
G(j,j)2+α2 . This leads to the estimate

xf,tik = FG†tikF
∗dt (6.242)

of xt which can be computed in O
(
nlog(n)

)
flops. An example solution is shown in Figure

6.46. This is an example of incorporating a prior into a solution in an unfamiliar basis, in
this case the standard Tikhonov white noise prior, but in Fourier space. The Fourier Tikhonov
estimate xf,tik is closely related to the Wiener Filter. More information can be found in [56,
79, 117].

Figure 6.46: Fourier based, Tikhonov inspired estimate

I propose a method of constructing a filter that incorporates BAE and local sample com-
pression. Let the accurate model be d = Ā(x̄, z̄, ξ̄) + e as in Section 6.3.3. The aim is to
construct a filter g such that estimates

xf,g = F−1

(
g �F(dt)

)
(6.243)

are close to the ground truth xt. I compute draws dj = Ā(x̄j , z̄j , ξ̄j) + ej and xj = Px,x̄x̄j . I
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also compute “draws” gj as

gj(k) =


0 if

(
F(dj)

)
(k) = 0(

F(xj)
)

(k)(
F(dj)

)
(k)

otherwise
(6.244)

i.e. gj = ming
{
xj −F−1

(
g �F(dj)

)}
. I then compute the sample average filter

gπ =
1

m

m∑
j=1

gj (6.245)

of m samples. Note that samples are computed with the “accurate” model as in BAE, and the
filter is computed to be “accurate” for draws from the prior as in local sample compression.

I also approximate the combined error ν = e + ε from the above samples for the sake of
uncertainty quantification. I approximate ε, and therefore ν, as independent of x for the sake
of computational efficiency. Samples of the combined error νj are found as

νj = xj −F−1
(
gπ �F(dj)

)
(6.246)

noting that the m samples used in constructing gπ need to already be computed to evaluate νj .
The samples dj can be reused to reduce computational cost, although this would be something
of an inverse crime given that these samples are used in the construction of gπ. I form the
sample covariance Γ̂ν and take σ̂2 = diag(Γ̂ν). The estimates xf,gπ with 3σ̂ posterior error
intervals found by the above method are shown in Figure 6.47. While the MAP estimate is
overly smooth, the MAP with posterior error estimates do reasonably represent the ground
truth.

6.9 Rapid Uncertainty Quantification

Recall that the posterior covariance of a linear problem with Gaussian prior and additive error
with BAE is given as

Γx|d = (Γ−1
x +ATΓ−1

ν|xA)−1 (6.247)

where Γν|x = Γe + Γ̂ε − Γ̂εxΓ̂−1
x Γ̂xε. We may want to form the trust region as in [67], use an

approximate posterior error interval from the diagonal, or quantify the “size” of the covariance
with some matrix norm e.g. matrix 2 norm or Frobenius norm.

Recall that the conditional covariance can also be written as

Γx|d = Γx − ΓxdΓ
−1
d Γdx (6.248)
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Figure 6.47: Fourier based solution xf,gπ incorporating BAE and local sample approximation

which we can approximate by the sample covariance

Γx|d ≈ Γ̂x|d = Γ̂x − Γ̂xdΓ̂
−1
d Γ̂dx (6.249)

i.e. an approximate posterior covariance can be constructed just from samples of x and d. This
approximation can also be made for nonlinear models with non-Gaussian unknowns, however
such an approximation may not be representative of the actual uncertainty in the estimates.

As discussed in Section 6.4.2, QR factors of the sample matrices X = (x1, x2, . . . , xm) =
QxRx and D = (d1, d2, . . . , dm) = QdRd can be formed while samples xj and dj are being
computed. Note that a tolerance is used when forming Qx ∈ Rnx×rx and Qd ∈ Rnd×rd where
rx and rd are effective ranks. The sample posterior covariance can be expressed as

mΓ̂x|d = m

(
Γ̂x − Γ̂xdΓ̂

−1
d Γ̂dx

)
(6.250)

= QxRxR
T
xQ

T
x +QxRxR

T
dQ

T
d (QdRdR

T
dQ

T
d )−1QdRdR

T
xQ

T
x (6.251)

= QxRxR
T
xQ

T
x +QxRxR

T
d (RdR

T
d )−1RdR

T
xQ

T
x (6.252)

= Qx

(
RxR

T
x +RxR

T
d (RdR

T
d )−1RdR

T
x

)
QTx (6.253)

= QxMx|dQ
T
x . (6.254)

Note that only symmetric (RdR
T
d ) ∈ Rrd×rd needs to be inverted. The inverted matrix

(RdR
T
d )−1 can be computed iteratively as samples arrive by low rank updates, as described in

Section 6.4.2. Note also that only Qx ∈ Rnx×rx , Qd ∈ Rnd×rd and symmetric Mx|d ∈ Rrx×rx
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need to be stored in memory for the above representation of the posterior covariance. The
posterior error intervals in Figure 6.41 were taken from the diagonal of a posterior covariance
formed as in Equation (6.254).

The posterior covariance can be computed with fewer sample approximations with a mini-
mal increase in computational cost. Suppose we have a problem modelled as d = Ax+µ̂ε|x+e
with Gaussian x and e, and sample estimate µ̂ε|x as in BAE. The posterior covariance can be
expressed as

Γx|d = Γx − ΓxdΓ
−1
d Γdx (6.255)

= Γx − ΓxA
T (AΓxA

T + Γν|x)−1AΓx (6.256)

= Γx − ΓxA
T (AΓxA

T + Γe + Γ̂ε − Γ̂εxΓ̂−1
x Γ̂xε)

−1AΓx (6.257)

as described in Section 6.3. As described in Section 6.4.1, the conditional covariance Γ̂ε|x can
be expressed as

Γ̂ε − Γ̂εxΓ̂−1
x Γ̂xε = m

(
QεRεR

T
ε Q

T
ε +QεRεR

T
x (RxR

T
x )−1RxR

T
ε Q

T
ε

)
(6.258)

= mQε(RεR
T
ε +RεR

T
x (RxR

T
x )−1RxR

T
ε )QTε (6.259)

= QεMε|xQ
T
ε (6.260)

using the sample QR decompositions. Recall that samples of ε are computed as εj = Ā(x̄j , z̄j , ξ̄j)−
Axj . This involves computing samples yj = Axj . The recursive QR factorisation of the sam-
ples yj can be formed similarly. This allows for the approximation

AΓxA
T = Γy ≈ Γ̂y = QyRyR

T
yQ

T
y (6.261)

therefore

(AΓxA
T + Γe + Γ̂ε − Γ̂εxΓ̂−1

x Γ̂xε)
−1 ≈

(
Γe +QyRyR

T
yQ

T
y +QεMε|xQ

T
ε

)−1

(6.262)

=

(
Γe +

(
Qy Qε

)(RyRTy 0ry ,rε
0rε,ry Mε|x

)(
QTy
QTε

))−1

(6.263)

=

(
Γe +Qy,εMy,ε|xQ

T
y,ε

)−1

(6.264)

= Γ−1
e − Γ−1

e Qy,ε

(
M−1
y,ε|x +QTy,εΓ

−1
e Qy,ε

)−1

QTy,εΓ
−1
e

(6.265)
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where

M−1
y,ε|x =

(
(RyR

T
y )−1 0ry ,rε

0rε,ry M−1
ε|x

)
(6.266)

can be computed recursively as samples arrive, as described in Section 6.4.2. The posterior
covariance can be approximated as

Γx|d = Γx − ΓxdΓ
−1
d Γdx (6.267)

= Γx − ΓxA
T (AΓxA

T + Γe + Γ̂ε − Γ̂εxΓ̂−1
x Γ̂xε)

−1AΓx (6.268)

≈ Γx − ΓxA
T

(
Γ−1
e − Γ−1

e Qy,ε
(
M−1
y,ε|x +QTy,εΓ

−1
e Qy,ε

)−1
QTy,εΓ

−1
e

)
AΓx (6.269)

≈ Γx −QxRxRTyQTy
(

Γ−1
e − Γ−1

e Qy,ε
(
M−1
y,ε|x +QTy,εΓ

−1
e Qy,ε

)−1
QTy,εΓ

−1
e

)
QyRyR

T
xQ

T
x

(6.270)

≈ Qx

(
RxR

T
x −RxRTyQTy

(
Γ−1
e − Γ−1

e Qy,ε
(
M−1
y,ε|x +QTy,εΓ

−1
e Qy,ε

)−1
QTy,εΓ

−1
e

)
QyRyR

T
x

)
QTx

(6.271)

where each approximation in the above equations incorporates more sample approximations.
Note that the noise covariance is not approximate, and the quantities computed from samples
are “noiseless”. Note the only inversions that need to be computed in the above equations are
of

Γe ∈ Rnd×nd

RyR
T
y ∈ Rry×ry

Mε|x ∈ Rrε×rε and(
M−1
y,ε|x +QTy,εΓ

−1
e Qy,ε

)
∈ R(ry+rε)×(ry+rε)

which potentially represents a large reduction in computational cost, particularly when Γe is
simple to invert e.g. diagonal. The above construction can be computed recursively as samples
arrive as described in Section 6.4.2, although the algebra is tedious. In my experience, com-
puting

(
M−1
y,ε|x +QTy,εΓ

−1
e Qy,ε

)−1 recursively and Γx|d once sampling concludes is sufficient.
The above formulation can also be used when A is nonlinear. The crudest approach is to

compute a posterior covariance exactly as in Equations 6.267 - 6.271 i.e. quantify the uncer-
tainty in estimates of xt as equal regardless of xt. A more representative approach would be to
adapt the Laplace approximation, which approximates the model A as linear around the esti-
mate xMAP of xt. Recall the local sample approximation as an approximation of the Jacobian
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as discussed in Section 6.6.2. This effectively amounts to approximating JMAP with a sample
approximation, where samples are yj = A(xMAP+∆x,j) where ∆x,j is a small perturbation. If
samples yj are computed in this way, the “Laplace type” posterior covariance is as in Equations
6.267 - 6.271.

Samples can also be used to more directly estimate the error in estimates. Compute an
additional m̂ samples dj = Ā(x̄j , z̄j , ξ̄j) + ej and xj = Px,x̄x̄j . Using the estimation scheme
constructed for the online stage, compute estimates x̂j of xj from dj , and the residual ζj =
x̂j − xj . Note that if BAE is incorporated correctly, µζ ≈ 0nx,1. The posterior covariance can
be approximated as

Γx|d ≈ Γ̂ζ (6.272)

or

σ̂2 ≈
1

m̂− 1

m̂∑
j=1

(ζj − µ̂ζ)� (ζj − µ̂ζ) (6.273)

implicitly making a diagonal approximation. In this thesis both estimating the posterior covari-
ance or posterior variance from MAP estimate residuals is referred to as the posterior residual
approach. More detail can be found in e.g. [118, 119]. This approach is used in Chapters 8
and 9, and was found to be effective when sample entities such as those used in constructing
the sample conditional mean converge slowly.

Presented in [120] are methods of computing vT f(G)u efficiently, where v and u are vec-
tors, G is a matrix, and f is some function of this matrix. Of particular interest is the com-
putation of eTj G

−1ej i.e. the j’th diagonal element of G−1 This can be used in our case to
compute

σ̂2(j) = Γx|d(j, j) = eTj (Γ−1
x +ATΓν|xA)−1ej . (6.274)

This could be used to find all diagonal elements, or just a few. This is particularly useful when
uncertainty estimates are only wanted in a particular region. I only mention the existence of
these methods in this thesis. An alternative approach to estimating just a few diagonal elements
of Γx|d incorporating Landweber iterations is presented in Section 8.4.

Being able to quantify uncertainty quickly is particularly useful for Design of Experiments
[121]. Consider a set of forward models AEj corresponding to different measurement setups
Ej . Choosing which experiment Ej that gives the most accurate estimates of xt can be thought
of as choosing Ej such that Γx|d is “smallest”. This may require computing multiple posterior
covariances per Ej in order to make a comparison. For such problems, the ability to compute
posterior covariances relatively quickly with low rank approximations as in Equations 6.267 -
6.271 can significantly reduce computational cost at the offline phase.



Chapter 7

Combining and Implementing
Methods for Inverse Problems

This chapter outlines a methodology for approaching inverse problems that makes use of the
methods of Chapter 6.

Let

d = Ā(x̄, z̄, ξ̄) + e (7.1)

= Ā(ω̄) + e (7.2)

where d is measured data, Ā is an accurate model, x̄ is an approximation of the unknown of
interest, z̄ is an auxiliary unknown (typically the region around x̄), ξ̄ is an additional parameter
in the model and ω̄ is the combination of x̄, z̄ and ξ̄. Let a particular realisation be

dt = Ā(x̄t, z̄t, ξ̄t) + et (7.3)

= Ā(ω̄t) + et (7.4)

and we wish to estimate xt = Px,x̄x̄t, the “sufficient resolution” ground truth. This thesis
considers the case that the model of Equation (7.1) is sufficiently accurate but computationally
expensive to work with. A typical case would be that the MAP estimate

ω̄MAP = min
ω̄

{∥∥∥L̃e(Ā(ω̄)− dt)
∥∥∥2

2
+ Ḡ(ω̄)

}
(7.5)

cannot be computed by standard methods with the computational resources available at the
online stage.

145
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7.1 Reducing Computational Complexity with Sample Approxi-
mations

Suppose Ā is a linear model i.e. d = Ā

x̄z̄
ξ̄

+ e = Āω̄ + e. Let x̄ ∈ Rnx̄ , z̄ ∈ Rnz̄ , ξ̄ ∈ Rnξ̄

and ω̄ ∈ Rnω̄ where nω̄ = nx̄ + nz̄ + nξ̄. One way of estimating ω̄t from data dt = Āω̄t + et
would be truncated series expansion as in Section 3.2. Let Ā = UĀ,rDĀ,rV

T
Ā,r

be the r term
thin SVD of Ā. The r term tSVD estimate of ω̄t is

ω̄†r = VĀD
−1
Ā
UTĀdt. (7.6)

This estimate costs O
(
r(nd + nω̄)

)
flops and requires O

(
r(nd + nω̄)

)
numbers in storage at

the online phase. With the tSVD computed, a standard Tikhonov type estimate can be found by
adjusting the filter factors as described in Section 3.4, although in a reduced basis as described
in Section 6.2. While such estimates may be of satisfactory accuracy and computational cost
at the online stage, the offline computational cost of computing the tSVD may be prohibitive.

The tSVD could be computed by global randomised compression as described in [37] and
reviewed in Section 6.6. The randomised r term tSVD of Ā can be computed with 2(q + 1)
passes over Ā. Suppose draws ω̄j of ω̄ are available/can be computed. In this case, the local
sample compression can be computed as proposed in Section 6.6.1.

Consider the single pass (q = 0) sample approximations of Section 6.6.1. While the tSVD
estimate is of the form

ω̄†r = VĀD
−1
Ā
UTĀdt (7.7)

the sample conditional mean estimate can be computed from m samples as

µ̂ω̄|d=dt = µ̂ω̄ + Γ̂ω̄dΓ̂
−1
d (dt − µ̂d) (7.8)

≈ µ̂ω̄ +Qω̄Rω̄Rd(RdR
T
d )−1Qd(dt − µ̂d) (7.9)

where Qω̄ ∈ Rnω̄×rω̄ , Qd ∈ Rnd×rd and Rω̄Rd(RdRTd )−1 ∈ Rrω̄×rd can be computed from
samples ω̄j and dj as the samples are computed. Note that such an estimate can be computed
in O(rdnd + rω̄nω̄ + rω̄rd) flops and requires O(rdnd + rω̄nω̄ + rω̄rd) numbers in storage at
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the online phase. Alternatively, noiseless samples ȳj = Āω̄j can be used to compute

µ̂ω̄|d=dt = µ̂ω̄ + Γ̂ω̄dΓ̂
−1
d (dt − µ̂d) (7.10)

= µ̂ω̄ + Γ̂ω̄d(Γe + Γ̂ȳ)
−1(dt − µ̂d) (7.11)

= µ̂ω̄ +
1

m
Qω̄Rω̄R

T
ȳQ

T
ȳ (Γe +

1

m
QȳRȳR

T
ȳQ

T
ȳ )−1(dt − µ̂d) (7.12)

= µ̂ω̄ +Qω̄Mω̄ȳQ
T
ȳ (Γe +QȳMȳQ

T
ȳ )−1(dt − µ̂d) (7.13)

= µ̂ω̄ +Qω̄Mω̄ȳQ
T
y

(
Γ−1
e + Γ−1

e Qȳ
(
M−1
ȳ +QTȳ Γ−1

e Qȳ
)−1

QTy Γ−1
e

)
(dt − µ̂d)

(7.14)

by application of the matrix inversion lemma. The above form is particularly useful when Γ−1
e

is simple to compute e.g. Γe = σ2
eInd . In that case, estimates can be computed as

µ̂ω̄|d=dt = µ̂ω̄ +Qω̄Mω̄ȳQ
T
ȳ

(
1

σ2
e

Ind +
1

σ4
e

Qȳ
(
M−1
ȳ +

1

σ2
e

Irȳ
)−1

QTȳ

)
(dt − µ̂d) (7.15)

= µ̂ω̄ +Qω̄Mω̄ȳ

(
1

σ2
e

Irȳ +
1

σ4
e

(
M−1
ȳ +

1

σ2
e

Irȳ
)−1
)
QTȳ (dt − µ̂d). (7.16)

Note that such an estimate can be computed inO
(
rȳ(rȳ+nd+nω̄)+rω̄nω̄

)
flops and requires

O
(
rȳ(rȳ + nd + nω̄) + rω̄nω̄

)
numbers in storage at the online phase. Note that the above

estimate can be constructed even for nonlinear Ā and non normally distributed unknowns.

The posterior covariance can also be approximated with samples, as described in Section
6.9. The posterior covariance can be constructed from samples of ω̄j and dj as

mΓ̂ω̄|d = mm

(
Γ̂ω̄ − Γ̂ω̄dΓ̂

−1
d Γ̂dω̄

)
(7.17)

= Qω̄Rω̄R
T
ω̄Qω̄R

T
ω̄ −Qω̄Rω̄RTd (RdR

T
d )−1RdRω̄Q

T
ω̄ . (7.18)

Alternatively, samples of ȳj = Āω̄j and knowledge of e ∼ N (µe,Γe) and ω̄ ∼ N (µω̄,Γω̄)
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can be used to form

Γω̄|d = Γω̄ − Γω̄dΓ
−1
d Γdω̄ (7.19)

= Γω̄ − Γω̄Ā
T (Γe + ĀΓω̄Ā

T )−1ĀΓω̄ (7.20)

≈ Γω̄ − Γω̄Ā
T (Γe + Γ̂ȳ)

−1ĀΓω̄ (7.21)

= Γω̄ − Γω̄Ā
T (Γe +QȳMȳQȳ)

−1ĀΓω̄ (7.22)

= Γω̄ − Γω̄Ā
T

(
Γ−1
e − Γ−1

e Qȳ(M
−1
ȳ +QTȳ Γ−1

e Qȳ)
−1QTȳ Γ−1

e

)
ĀΓω̄ (7.23)

≈ Γω̄ −Qω̄Mω̄ȳQ
T
ȳ

(
Γ−1
e − Γ−1

e Qȳ(M
−1
ȳ +QTȳ Γ−1

e Qȳ)
−1QTȳ Γ−1

e

)
QȳM

T
ω̄ȳQ

T
ω̄

(7.24)

≈ Qω̄

(
Mω̄ −Mω̄ȳQ

T
ȳ

(
Γ−1
e − Γ−1

e Qȳ(M
−1
ȳ +QTȳ Γ−1

e Qȳ)
−1QTȳ Γ−1

e

)
QȳM

T
ω̄ȳ

)
QTω̄

(7.25)

where each approximation replaces additional quantities with sample approximations. Note
that the final form only requires Γe be known, with all other quantities being derived from
samples. In the case that Γe = σ2

eInd ,

Γω̄|d ≈ Qω̄

(
Mω̄ −Mω̄ȳQ

T
ȳ

(
Γ−1
e − Γ−1

e Qȳ(M
−1
ȳ +QTȳ Γ−1

e Qȳ)
−1QTȳ Γ−1

e

)
QȳM

T
ω̄ȳ

)
QTω̄

(7.26)

= Qω̄

(
Mω̄ −Mω̄ȳQ

T
ȳ

(
1

σ2
e

Ind −
1

σ4
e

Qȳ(M
−1
ȳ +

1

σ2
e

Irȳ)
−1QTȳ

)
QȳM

T
ω̄ȳ

)
QTω̄ (7.27)

= Qω̄

(
Mω̄ −Mω̄ȳ

(
1

σ2
e

Irȳ −
1

σ4
e

(M−1
ȳ +

1

σ2
e

Irȳ)
−1

)
MT
ω̄ȳ

)
QTω̄ (7.28)

which requires O(nω̄rω̄ + r2
ω̄ + rω̄rȳ + r2

ȳ) numbers be stored in memory. Note that only
symmetric Mȳ ∈ Rrȳ×rȳ and (M−1

ȳ + 1
σ2
e
Irȳ) ∈ Rrȳ×rȳ need to be inverted.

In the case that nω̄ is prohibitively large, the above analysis can be repeated but substituting
e.g. x̄ ∈ Rnx̄ or x ∈ Rnx . For example, xt could be estimated as

µ̂x|d=dt = µ̂x +QxMxȳQ
T
y

(
Γ−1
e + Γ−1

e Qȳ
(
M−1
ȳ +QTȳ Γ−1

e Qȳ
)−1

QTȳ Γ−1
e

)
(dt − µ̂d)

(7.29)
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with approximate posterior covariance

Γ̂x|d = Qx

(
Mx −MxȳQ

T
ȳ

(
Γ−1
e − Γ−1

e Qȳ(M
−1
ȳ +QTȳ Γ−1

e Qȳ)
−1QTȳ Γ−1

e

)
QȳM

T
xȳ

)
QTx

(7.30)

where Qx, Rx Mx = 1
mRxR

T
x , Mxȳ = 1

mRxR
T
ȳ are formed from samples xj = Px,ω̄ω̄j .

However, these estimates are likely less accurate than estimates constructed using samples of
ω̄. Given that the quantities in this section can be computed in parallel with samples being
generated as described in Section 6.4.2, there is minimal reduction in computational cost at the
offline phase of constructing e.g. µ̂x|d rather than µ̂ω̄|d. There is a slight reduction however in
computational cost and storage requirements at the online phase when using µ̂x|d rather than
µ̂ω̄|d due to the reduction in dimension from nω̄ to nx.

The recommendation of this thesis is to attempt forming local sample estimates such as
µ̂x|d in Equation (7.29) and Γ̂ω̄|d as in Equation (7.30). The samples used to compute µ̂x|d and
Γω̄|d are also used in BAE, so the additional offline cost of computing µ̂x|d and Γω̄|d is minimal.

Computing µ̂x|d requiresO
(
rȳ(rȳ +nd +nx) + rxnx

)
flops andO

(
rȳ(rȳ +nd +nx) +

rxnx

)
numbers in storage at the online phase. Providing posterior error intervals requires an

additional 2nx flops and nx numbers stored in memory at the online stage. This is potentially a
relatively low online computational cost, so worth investigating. Such an approach is attempted
in Chapters 8, 9 and 10. In chapters 8 and 9, rx was found to be too high to justify implement-
ing the method over other approaches. For the nonlinear problem of Chapter 10, the estimates
µ̂x|d as in Equation (7.29) and Γ̂x|d as in Equation (7.30) performed well. The online computa-
tional time is reduced from 11.2 seconds with standard nonlinear estimation methods to 0.0004
seconds when computing estimates as above. The estimates µ̂x|d as in Equation (7.29) and
Γ̂x|d as in Equation (7.30) were also more representative of the ground truth than the nonlinear
estimates.

7.2 Initial Sampling

The above section discusses how samples can be used efficiently to compute e.g. approximate
covariances. This section considers the efficient computation of samples.

Let s̄ =

(
x̄
z̄

)
∼ N (Γs̄, µs̄). Samples can be computed as s̄j = µs̄ + Ls̄wj where wj is a

draw of w ∼ N (0ns̄,1 , Ins̄) and Ls̄LTs̄ = Γs̄. Consistent prior covariances can be constructed
with projection matrices e.g. Γx = Px,s̄Γs̄P

T
x,s̄.
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Let Γ̄s̄ be a covariance matrix constructed with a covariance function e.g. smoothness as
in Section 5.1.1. The covariance matrix can be streamed through memory and the eigende-
composition constructed as a global sample approximation as described in [37] and reviewed
in Section 6.6. The intermediate step of computing the QR factorisation can be accomplished
with recursive QR as described in Section 6.4.1. In the case that the covariance is well under-
stood e.g. isotropic unstructured smoothness prior on a rectangular domain, we may have the
eigendecomposition of Γ̄s̄ analytically [73, 93] as reviewed in Section 6.5. For all these cases,

a filter of the form Ls̄ = Us̄Λ
1
2
s̄ can be constructed.

If it is found that Γ̄s̄ is low effective rank, a reduced basis or penalty subspace may be
used, as discussed in Section 6.2. In this section, Γs̄ refers to the reduced dimension or penalty
subspace approximation to Γ̄s̄.

Suppose the prior on s̄ was formed by direct filter construction as described in Section
5.1.3. Let L̄s̄ be the filter constructed directly. In the case that L̄s̄ is difficult to work with e.g. a
full matrix, a sample factorisation can also be formed. For example, samples s̄j = L̄s̄wj could
be computed, and recursive QR performed on such samples as in Section 6.4.2. This can be
used to construct the low rank approximation

L̄s̄ ≈ Ls̄ = Qs̄Rs̄Rw(RwR
T
w)−1QTw. (7.31)

Subsequent analysis of the problem can be done in terms of

Γs̄ = Ls̄L
T
s̄ =

1

m
Qs̄Rs̄R

T
s̄ Q

T
s̄ , (7.32)

a low rank approximation of the “directly constructed” prior. This approximation can be used
in a reduced basis approach, or a penalty subspace could be introduced to form

Γs̄ =
1

m
Qs̄Rs̄R

T
s̄ Q

T
s̄ + κ2(I −Qs̄QTs̄ ) (7.33)

where κ ∈ R is some small positive number.

7.3 BAE and Local Compression

Suppose samples x̄j , z̄j , ξ̄j and xj can be generated. Let d = Ā(x̄, z̄, ξ̄) + e. Let a particular
realisation be dt = Ā(x̄t, z̄t, ξ̄t) + et, and we wish to estimate xt = Px,x̄x̄t from dt.

Estimates of xt could be formed with a sample conditional mean type approach as in Sec-
tion 7.1. In this section I consider incorporating the BAE model

d = Ā(x̄, z̄, ξ̄) + e (7.34)

= A(x) + Ā(x̄, z̄, ξ̄)−A(x) + e (7.35)

= A(x) + ε+ e (7.36)

≈ A(x) + µ̂ε|x + e (7.37)
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where µ̂ε|x is the sample conditional mean of ε. Samples are computed as εj = Ā(x̄j , z̄j , ξ̄j)−
A(xj). Compare this to the entirely sample based approach discussed in Section7.1, which
approximates the forward model as

d ≈ µ̂d|x = µ̂d + Γ̂d,xΓ̂−1
x (x− µ̂x) (7.38)

for a single pass.
I expect the BAE approach will produce better estimates than purely sample based ap-

proaches in the case that Ā and A are nonlinear. In the case that A is linear, BAE may still
represent a significant improvement. It is possible that µ̂ε|x can be estimated effectively with a
fewer number of samples than µ̂d|x. For example, the case Ā = A. Another possibility is that
the BAE forward model A(x) + µ̂ε|x can be evaluated more easily than the local sample ap-
proximation µ̂d|x. For example, the entity QεRεRTx (RxR

T
x )−1QTx in the BAE forward model

as derived in Section 6.4.1 may be low rank, while the entity QdRdRx(RxR
T
x )−1QTx in the

local sample approximation µ̂d|x may be high rank.
I compute µ̂ε|x using recursive QR as

µ̂ε|x = µ̂ε + Γ̂εxΓ̂−1
x (x− µ̂x) (7.39)

= µ̂ε +QεRεR
T
x (RTxR

T
x )−1QTx (x− µ̂x) (7.40)

as described in Section 6.4.1.
Recall the BAE MAP estimate

xMAP = min
x

{∥∥∥L̃ν|x(d−A(x)− µ̂ν|x)
∥∥∥2

2
+Gx(x)

}
(7.41)

where L̃Tν|xL̃ν|x = (Γ̂ν|x)−1 = (Γe + Γε|x)−1 and Gx is the exponential prior filter on x e.g.
G = TV(x).

Consider Γν|x. This can be formed as

Γν|x = Γe + Γ̂ε|x (7.42)

= Γe +
1

m
Qε(RεR

T
ε −RεRx(RxR

T
x )−1RxRε)Q

T
ε (7.43)

= Γe +QεMε|xQ
T
ε (7.44)

and apply the matrix inversion lemma to find

Γ−1
ν|x =

(
Γe +QεMε|xQ

T
ε

)−1

(7.45)

= Γ−1
e − Γ−1

e Qε(Mε|x −QεΓ−1
e QTε )−1QTε Γ−1

e (7.46)
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a result which can be reused when we form the posterior covariance Γx|d ≈ Γx−ΓxJ
T (Γν|x+

JΓxJ
T )−1JΓx. We can also compute L̃ν|x efficiently as an update to L̃e, as described in

Section 6.4.1.
Consider the BAE posterior covariance. Let JMAP be the linearisation of A at xMAP . The

Laplace approximation to the posterior covariance is

Γx|d = Γx − ΓxdΓ
−1
d Γdx (7.47)

≈ Γx − ΓxJ
T
MAP(Γe + JMAPΓxJ

T
MAP + Γ̂ε − Γ̂εxΓ̂−1

x Γ̂xε)
−1JMAPΓx (7.48)

= Γx − ΓxJ
T
MAP

(
Γe + JMAPΓxJ

T
MAP +

1

m
Qε(RεR

T
ε −RεRx(RxR

T
x )−1RxR

T
ε )QTε

)−1

JMAPΓx

(7.49)

= Γx − ΓxJ
T
MAP

(
Γe + JMAPΓxJ

T
MAP +QεMε|xQ

T
ε

)−1

JMAPΓx. (7.50)

There are advantages to forming a low rank approximation to Γx e.g. Γx ≈ LxLTx with

Lx = (l1, l2, . . . , lrx) ∈ Rnx×rx (7.51)

as then

JMAPΓxJ
T
MAP ≈

(
JMAPLx

)(
JMAPLx

)T
(7.52)

with (
JMAPLx

)
(:, j) = JMAPlj ≈

1

κ

(
A(xMAP + κlj)−A(xMAP )

)
(7.53)

where κ ∈ R is a small positive number. Note that this construction allows JMAPΓxJ
T
MAP to be

constructed with rx additional evaluations of A rather than explicitly forming JMAP. Similarly
JMAPΓx = (JMAPLx)LTx can be formed. Alternatively, compute the approximation

JMAPΓx ≈ Γ̂yx =
1

m
QyRyR

T
xQ

T
x (7.54)

JMAPΓxJ
T
MAP ≈ Γ̂y =

1

m
QyRyR

T
yQ

T
y (7.55)

where Qy, Qx, Ry and Rx are computed from samples xj from the prior and yj = A(xMAP +
κxj). Note that such local sample approximations can be constructed with non normal un-
knowns and nonlinear A.
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Let BBT ≈ JMAPΓxJ
T
MAP with B ∈ Rnd×ry be the low rank approximation found either

by a ow rank approximation to Γx or sampling. Note that

(
Γe + JMAPΓxJ

T
MAP +QεMε|xQ

T
ε

)−1

≈
(

Γe +BBT +QεMε|xQ
T
ε

)−1

(7.56)

can be computed as a low rank update of Γ−1
e by the matrix inversion lemma i.e.

(
Γe +BBT +QεMε|xQ

T
ε

)−1

=

(
Γe +

(
B Qε

)( Iry 0ry ,rε
0rε,ry Mε|x

)(
BT

QTε

))−1

(7.57)

= Γ−1
e − Γ−1

e

(
B Qε

)(( Iry 0ry ,rε
0rε,ry M−1

ε|x

)
+
(
B Qε

)
Γ−1
e

(
BT

QTε

))−1(
BT

QTε

)
Γ−1
e

(7.58)

which can then be reincorporated into Γx|d.

7.4 Point estimates for Linear Gaussian Inverse Problems

Consider the linear A BAE forward model

d = Ax+ µ̂ν|x + e (7.59)

where x ∼ N (µx,Γx) and e ∼ N (0nd,1,Γe). The MAP estimate is

xMAP = min
x

{∥∥∥L̃ν|x(d−Ax− µ̂ν|x)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(7.60)

= min
x

{∥∥∥L̃ν|x(d−Ax− Γ̂εxΓ̂x(x− µx)− µ̂ε)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(7.61)

= min
x

{∥∥∥∥(L̃ν|x(A+ Γ̂εxΓ̂x)

L̃x

)
x−

(
L̃ν|x(d+ Γ̂εxΓ̂xµx − µ̂ε)

L̃xµx

)∥∥∥∥2

2

}
(7.62)

=

(
L̃ν|x(A+ Γ̂εxΓ̂x)

L̃x

)†(
L̃ν|x(d+ Γ̂εxΓ̂xµx − µ̂ε)

L̃xµx

)
. (7.63)



154CHAPTER 7. COMBINING AND IMPLEMENTING METHODS FOR INVERSE PROBLEMS

Note that for this case, xMAP = µx|d. When using BAE, the conditional mean is

µx|d = µx + ΓxdΓ
−1
d (d− µd) (7.64)

= µx + ΓxA
T

(
Γe +AΓxA

T +QεMε|xQ
T
ε

)−1

(d−Aµx − µ̂ε) (7.65)

≈ µx +
1

m
QxRxR

T
yQ

T
y

(
Γe +

1

m
QyRyR

T
yQ

T
y +QεMε|xQ

T
ε

)−1

(d−Aµx − µ̂ε)

(7.66)

= µx +QxMxyQ
T
y

(
Γe +Qy,εMy,ε|xQ

T
yε

)−1

(d−Aµx − µ̂ε) (7.67)

= µx +QxMxyQ
T
y

(
Γ−1
e − Γ−1

e Qy,ε(M
−1
y,ε|x +QTyεΓ

−1
e Qyε)

−1QTyεΓ
−1
e

)
(d−Aµx − µ̂ε)

(7.68)

incorporating samples yj = Axj similar to Section 7.1. Note that

M−1
y,ε|x =

(
My 0ry ,rε

0rε,ry Mε|x

)−1

(7.69)

=

(
M−1
y 0ry ,rε

0rε,ry M−1
ε|x

)
(7.70)

can be computed recursively as samples are computed, as described in Section 6.4.2.
The conditional mean formulation above makes use of sample approximations to Γx and

AΓx. It could be that the sample approximations do not converge fast enough for the computa-
tional savings to be worthwhile. Note that the MAP estimate

xMAP = min
x

{∥∥∥L̃ν|x(d−Ax− µ̂ν|x)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(7.71)

=

L̃ν|x(A+QεRεR
T
x (RxR

T
x )−1Qx

)
L̃x

†(L̃ν|x(d+QεRεR
T
x (RxR

T
x )−1Qxµx − µ̂ε)

L̃xµx

)
(7.72)

= Â†d̂ (7.73)

makes use of different sample quantities. It may be that the MAP estimate found for a certain
number of samples is more representative of the ground truth than the conditional mean. This
is the case for the problems of Chapters 8 and 9.

Note that xMAP can be found as the solution to

ÂxMAP = d̂ (7.74)
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by an iterative solver e.g. Landweber iterations. This means that Â† neither needs to be com-
puted or stored. Computing Â† is a potentially large computational cost at the offline phase.
Using Â† may also be more difficult at the online phase e.g. Â might be sparse but Â† is full.

The Landweber sequence xk of approximations to xMAP is

xk+1 = xk + β(ÂT d̂− ÂT Âxk) (7.75)

where β ∈ R is the step length. A typical initial guess would be x0 = µx. Given that the
conditional mean estimate can be found with minimal additional computations by recursive
QR, I propose taking x0 = µ̂x|d computed as in Equation (7.29), potentially reducing the
required number of iterates. The ÂT d̂ term can be expanded as

ÂT d̂ =

((
AT +Qx(RxR

T
x )−1RxR

T
ε Q

T
ε

)
L̃Tν|x L̃Tx

)(
L̃ν|x(d+QεRεR

T
x (RxR

T
x )−1Qxµx − µ̂ε)

L̃xµx

)
(7.76)

=

(
AT +Qx(RxR

T
x )−1RxR

T
ε Q

T
ε

)
Γ−1
ν|x(d+QεRεR

T
x (RxR

T
x )−1Qxµx − µ̂ε) + Γ−1

x µx

(7.77)

and

Γ−1
ν|x = (Γe +QεMε|xQ

T
ε )−1 (7.78)

= Γ−1
e − Γ−1

e Qε(M
−1
ε|x +QTε Γ−1

e Qε)
−1QTε Γ−1

e (7.79)

by the matrix inversion lemma. The ÂT Â term can be expanded as

ÂT Â =

((
AT +Qx(RxR

T
x )−1RxR

T
ε Q

T
ε

)
L̃Tν|x L̃Tx

)L̃ν|x(A+QεRεR
T
x (RxR

T
x )−1Qx

)
L̃x


(7.80)

=

(
AT +Qx(RxR

T
x )−1RxR

T
ε Q

T
ε

)
Γ−1
ν|x

(
A+QεRεR

T
x (RxR

T
x )−1Qx

)
+ Γ−1

x .

(7.81)

Note that the innovation filters L̃ν|x and L̃x do not appear in the Landweber iteration, instead
only the unfactorised forms Γ−1

ν|x and Γ−1
x are used. This observation removes some computa-

tional cost at the offline phase. Care should be taken to compute ÂT d̂ and ÂT Âx from right
to left (matrix-vector products only) rather than try and explicitly form the matrices. This is
useful when products Av can be computed rapidly (e.g. when A is sparse).
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7.5 Discussion

Various combinations of the methods of this thesis have been proposed in this chapter. Let the
model be

d = Ā(x̄, z̄, ξ̄) + e (7.82)

and we wish to estimate xt from dt where dt = Ā(x̄t, z̄t, ξ̄t) + et. Let e ∼ N (0nd,1,Γe).
I recommend first forming the sample estimate

µ̂x|d=dt = µ̂x +QxMxȳQ
T
y

(
Γ−1
e + Γ−1

e Qȳ
(
M−1
ȳ +QTȳ Γ−1

e Qȳ
)−1

QTȳ Γ−1
e

)
(dt − µ̂d)

(7.83)

with approximate posterior covariance

Γ̂x|d = Qx

(
Mx −MxȳQ

T
ȳ

(
Γ−1
e − Γ−1

e Qȳ(M
−1
ȳ +QTȳ Γ−1

e Qȳ)
−1QTȳ Γ−1

e

)
QȳM

T
xȳ

)
QTx

(7.84)

making use of recursive QR as samples are generated. This method was attempted for the
problems in Chapters 8, 9 and 10. The method was found to work well for the nonlinear
problem of Chapter 10.

The above estimate may perform poorly when e.g. rx or rȳ is large, requiring many samples
be computed at the offline stage and using large matrices at the online stage. This is the situation
for the problems in Chapters 8 and 9. Instead, the MAP estimate with linear approximate
model and BAE d ≈ Ax + µ̂ε|x + e is found by Landweber iterations. That is, the sequence
approximating the MAP is formed as

xk+1 = xk + β(ÂT d̂− ÂT Âxk) (7.85)

where

ÂT d̂ =

(
AT +Qx(RxR

T
x )−1RxR

T
ε Q

T
ε

)
Γ−1
ν|x(d+QεRεR

T
x (RxR

T
x )−1Qxµx − µ̂ε) + Γ−1

x µx

(7.86)

and

Γ−1
ν|x = Γ−1

e − Γ−1
e Qε(M

−1
ε|x +QTε Γ−1

e Qε)
−1QTε Γ−1

e (7.87)

and

ÂT Â =

(
AT +Qx(RxR

T
x )−1RxR

T
ε Q

T
ε

)
Γ−1
ν|x

(
A+QεRεR

T
x (RxR

T
x )−1Qx

)
+ Γ−1

x .

(7.88)
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The estimates found in this way were found to be of sufficient accuracy and computational cost
at the online stage. The entities constructed from samples were found to be effectively low
rank, and could be estimated to sufficient accuracy from a relatively small number of offline
samples. Posterior error intervals can be computed by posterior residuals from an additional m̂
samples. The samples dj = Ā(x̄j , z̄j , ξ̄j) + ej and xj = Px,x̄x̄j are used to compute estimates
xMAP,j of xj from dj , and the residual ζj = xMAP,j−xj . The posterior error interval is formed
as

σ̂2 ≈
1

m̂− 1

m̂∑
j=1

(ζj − µ̂ζ)� (ζj − µ̂ζ) (7.89)

implicitly making a diagonal approximation. This approach is used in Chapters 8 and 9, and
was found to be effective when sample entities such as those used in constructing the sample
conditional mean converge slowly.
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Chapter 8

2D Deconvolution

This chapter will consider deconvolution in 2D. The purpose of this chapter is not to give an in
depth study of 2D deconvolution, but rather to demonstrate the validity of approximations and
effectiveness of methods proposed in Chapters 6 and 7.

Let the full domain be Ω = [1, 512]× [1, 512] which we discretise into t̄1 = (1 : 1 : 512) ∈
R512 and t̄2 = (1 : 1 : 512) ∈ R512 i.e. a 512 × 512 pixel image. The region of interest is
the upper right hand quadrant Ωx with t̄x̄,1 = (1 : 1 : 256) ∈ R256 and t̄x̄,1 = (257 : 1 :
512) ∈ R256. Define ns̄ = 512 and Ns̄ = n2

s̄ = 5122 = 262, 144. Similarly, nx̄ = 256 and
Nx̄ = n2

x̄ = 2562 = 65, 536. The rest of the pixels in the image are z̄. All pixel values are
stored in s̄ ∈ R262,144, pixel values in the region of interest are stored in x̄ ∈ R65,536, and pixel
values outside the region of interest are store in z̄ ∈ R196,608.

The convolution kernel is

k(t, ξ̄) =
1

2πξ̄2
exp
(
−‖t0 − t‖22

2ξ̄2

)
(8.1)

where t0 = (256.5, 256.5)T is the centre of the image and ξ̄ ∈ R1 controls the width of this
Gaussian kernel. Let ξ̄ ∼ U(2, 3).

The data is in Ωx but downsampled from 256×256 pixels to 128×128 pixels i.e. nd = 128,
Nd = 16, 384. This discretisation is the same as for x ∈ R16,384, the region of interest at an
acceptable resolution i.e. nx = 128 and Nx = 16, 384.

I define the “accurate” model

d = Ā(x̄, z̄, ξ̄) + e (8.2)

and the “simple” model

d ≈ A(x) + e. (8.3)

159
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Note that the simple model is at lower resolution, ignores three quarters of the image, and
uses a fixed kernel width µξ = 2.5. Both models compute the convolution with fast Fourier
transforms. The models can be expanded as

c̄ = F̄ (x̄, z̄, ξ̄) = F−1

(
F(s̄)�F(k̄)

)
(8.4)

d = ȳ + e = M̄ c̄+ e (8.5)

d ≈ y + e = A(x) + e = F (x) + e = F−1

(
F(x)�F(k)

)
(8.6)

where c̄ is the convolved signal, F̄ is the accurate physics model, k̄(j) = k(t̄(j), ξ̄), ȳ is the
accurate noiseless model prediction, M̄ extracts the component of c̄ in Ωx and downsamples to
the discretisation of d, y is the simple noiseless model prediction, F is the simple physics model
and k(j) = k(tx(j), µξ). Note that y = A(x) = F (x) while ȳ = Ā(x̄, z̄, ξ̄) = M̄F̄ (x̄, z̄, ξ̄).

Shown in Figure 8.1 is the original image. Shown in Figure 8.2 is the image in the region of
interest. Shown in Figure 8.3 is the image in the region of interest at the “acceptable” resolution
of x.

Shown in Figure 8.4 is the image convolved with ξ̄ = 2. Figure 8.5 shows the convolved
image in the region of interest. Figure 8.6 shows the measured data d = Ā(x̄, z̄, 2) + e where
σe = 0.02. This translates to around 5% noise. Figures 8.7 through 8.9 use kernel ξ̄ = 3.

Let s̄ ∼ N (0Ns̄ ,Γs̄) be a smoothness prior. Note that Γs̄ ∈ RNs̄×Ns̄ i.e. a 262, 144 ×
262, 144 matrix. Rather than try and form the covariance with a covariance function, I construct
the information filter directly as

s̄j = Ls̄w̄j = hF̄ (w̄j , l) (8.7)

= hF−1

(
F(w̄j)�F(kl)

)
(8.8)

= F−1

(
F(w̄j)� gs̄

)
(8.9)

where kl(j) = k(t(j), ξ̄ = l). This construction only requires gs̄ ∈ RNs̄ be stored, and draws

can be computed in O
(
Ns̄log(Ns̄)

)
flops. More details on this approach can be found in

Section 5.1.3. I choose h = 2 and l = 1.5, as the corresponding draws have “bumps” with
approximate amplitude and width of the features I expect to recover.

A sample conditional mean type approach could be implemented, as described in Section
7.1. For example, the estimate

µ̂x|d=dt = µ̂x +QxMxȳQ
T
ȳ

(
Γ−1
e + Γ−1

e Qȳ
(
M−1
ȳ +QTȳ Γ−1

e Qȳ
)−1

QTy Γ−1
e

)
(dt − µ̂d)

(8.10)



161

Figure 8.1: “Full” ground
truth s̄t on Ω

Figure 8.2: High resolution
ground truth x̄t

Figure 8.3: Acceptable
resolution ground truth xt

Figure 8.4: Narrow kernel
convolution F̄ (x̄, z̄, 2)

Figure 8.5:
yξ=2 = Ā(x̄, z̄, 2)

Figure 8.6:
dξ=2 = yξ=2 + et

Figure 8.7: Wide kernel
convolution F̄ (x̄, z̄, 3)

Figure 8.8:
yξ=3 = Ā(x̄, z̄, 3)

Figure 8.9:
dξ=3 = yξ=3 + et

could be constructed with samples xj and ȳj . However, it was found that rȳ ≈ nȳ and rx ≈ nx
for this problem. This means a large number of samples need to be computed in order for the
sample estimates to converge, and the resulting matrices are still relatively large. I therefore do
not implement such an estimator for this problem.
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8.1 Filter Construction with BAE and Local Sample Approxima-
tion

Figure 8.10: Ground truth xt Figure 8.11: Data dt

Figure 8.12: Estimate xg of xt Figure 8.13: xg, edges removed

I implement an estimation scheme incorporating concepts of BAE and local sample ap-
proximation. The methodology is similar to that described in Section 6.7. I draw m samples
s̄j , ξ̄j and ej , from which xj = Ms̄j and dj = Ā(s̄j , ξ̄j) + ej are computed. I compute
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corresponding filters

gj(k) =

(
F(xj)

)
(k)(

F(dj)

)
(k)

(8.11)

where F is the Fourier transform on the same scale as x. I form

gπ =
1

m

∑
gj (8.12)

the average filter. Note that each sample is computed with O(Ns̄log(Ns̄)) flops.
I compute estimates xg of xt as

xg = F−1(gπ �F(d)) (8.13)

noting that such estimates require just gπ ∈ RNx in memory and O
(
Nxlog(Nx)

)
flops at the

online stage.
I compute solutions with m = 1, 000 samples. The ground truth xt is shown in Figure

8.10. The measured data dt computed with extra fine model ¯̄A(x̄, z̄, ξ̄) is shown in Figure 8.11.
The estimate xg of xt from dt is shown in Figure 8.12. Note that the reconstruction is poor
near the edges of the image. The estimate with the edges removed is shown in Figure 8.13.

8.2 Iterative BAE MAP solution

The sample CM estimate was found to involve high rank sample entities that did not converge
sufficiently quickly. This is a linear A Gaussian x problem, so the CM and MAP are the same.
However, the MAP is computed differently, and with some different sample entities. In this
section, I present a MAP estimate incorporating BAE and local sample approximations.

The BAE MAP estimate can be stated as

xMAP =

(
L̃ν|x(A+ Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(d+ Γ̂εxΓ̂−1

x µx − µ̂ε)
L̃xµx

)
(8.14)

= Â†d̂ (8.15)

where L̃Tν|xL̃ν|x = Γ−1
ν|x = (Γe+Γ̂ε|x)−1. Note that the MAP estimate makes use of the sample

entities

Γ̂εxΓ̂−1
x = QεRεR

T
x (RxR

T
x )−1QTx (8.16)
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and

Γ̂ε|x =
1

m
Qε(RεR

T
ε −RεRTx (RxR

T
x )RxR

T
ε )QTε . (8.17)

While the quantities relating to x e.g. (RxR
T
x ) may not have converged, it may be that the

MAP estimate is still representative.
It is worth mentioning the enhanced error model, which treats ε as independent of x. In the

enhanced error model, Γν|x = Γν = Γe+ 1
mQεRεR

T
ε Q

T
ε and Γ̂εxΓ̂−1

x = 0nd,nx . The enhanced
error model may be a good approach when Γx is of high effective rank, as the sample quantities
used may converge in fewer samples.

Recall that Γν|x = Γe + Γ̂ε|x = Γe +QεMε|xQ
T
ε . The inverse is

Γ−1
ν|x = (Γe + Γ̂ε|x)−1 (8.18)

= (Γe +QεMε|xQ
T
ε )−1 (8.19)

= Γ−1
e − Γ−1

e Qε(M
−1
ε|x +QTε Γ−1

e Qε)
−1QTε Γ−1

e (8.20)

by the matrix inversion lemma. In this problem Γe = σ2
eINx so

Γ−1
ν|x = Γ−1

e − Γ−1
e Qε(M

−1
ε|x +QTε Γ−1

e Qε)
−1QTε Γ−1

e (8.21)

=
1

σ2
e

INx −
1

σ4
e

Qε(M
−1
ε|x +

1

σ2
e

Irε)
−1QTε (8.22)

and recall that M−1
ε|x can be inverted in parallel with sample being computed as described in

Section 6.4.2.
I construct a sequence xk approximating xMAP by Landweber iterations i.e.

xk+1 = xk + β(ÂT d̂− ÂT Âxk) (8.23)

where β ∈ R is the step length. I incorporate the earlier estimate xg of xt from Section 8.1 by
setting x0 = xg. Note that

ÂT d̂ = (A+ Γ̂εxΓ̂−1
x )TΓ−1

ν|x(d+ Γ̂εxΓ̂−1
x µx − µd − µ̂ε) + Γ−1

x µx (8.24)

= (A+ Γ̂εxΓ̂−1
x )T

(
1

σ2
e

Ind −
1

σ4
e

Qε(M
−1
ε|x +

1

σ2
e

Irε)
−1QTε

)
(d+ µω) + Γ−1

x µx (8.25)

where

µω = QεRεR
T
x (RxR

T
x )−1QTxµx − µd − µ̂ε (8.26)
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and

ÂT Â =
(

(A+ Γ̂εxΓ̂−1
x )T L̃Tν|x L̃Tx

)(L̃ν|x(A+ Γ̂εxΓ̂−1
x )

L̃x

)
(8.27)

= (A+ Γ̂εxΓ̂−1
x )TΓ−1

ν|x(A+ Γ̂εxΓ̂−1
x ) + Γ−1

x (8.28)

= (A+ Γ̂εxΓ̂−1
x )T

(
1

σ2
e

Ind −
1

σ4
e

Qε(M
−1
ε|x +

1

σ2
e

Irε)
−1QTε

)
(A+ Γ̂εxΓ̂−1

x ) + Γ−1
x

(8.29)

noting thatA = AT . Note that ÂT d̂ and ÂT Âx can be evaluated efficiently by taking care with

the order of operations. Specifically, ÂT Âx can be computed in O
(
Nx

(
rx + rε + log(Nx)

))
flops. Compare this to using Â† explicitly, which would require O(N3

x) to find Â†, and then
O(N2

x) flops to compute Â†d̂t at the online stage.

Landweber iterates converge when 0 < β < 2
λ̂

where λ̂ = norm(ÂT Â) is the largest

eigenvalue of (ÂT Â) i.e. λ̂ = maxu:‖u‖=1{
∥∥∥ÂT Âu∥∥∥}. I computed several bj =

‖ÂT Âwj‖
‖wj‖

where wj is a white noise sample. I found that maxj{bj} ≈ 105, so took β = 10−6. This is the
norm estimation method of [122], an early example of a probabilistic linear algebra algorithm. I
computed 100 Landweber iterates, however the iterates were found to change little after iterate
8. For online estimation of the MAP, I chose to take 10 iterates.

The BAE sample entities and BAE filter are computed from only 200 draws. The MAP is
estimated in 10 Landweber iterations. The ground truth xt is shown in Figure 8.14. The noisy
data dt is shown in Figure 8.15. The MAP estimate is shown in Figure 8.16. Note that the
MAP estimate performs poorly near the edges, but better than xg. Shown in Figure 8.17 is the
MAP with the edges removed. Computed on a 2010 laptop with 2.4 GHz dual core CPU, 4 GB
of RAM and 250 GB hard drive, the offline phase took 35 seconds, and the online took 0.63
seconds.

The estimation scheme of this section integrates matrix free methods, BAE, recursive QR,
sample filter construction, local sample approximations and penalty subspaces. The offline

phase requiredO
(
mNx(rx+ rε+ log(Nx)) +mNs̄log(Ns̄)

)
flops with m = 200 a sufficient

number of samples. It also required storage ofO(Ns̄ + (rx + rε)Nx) numbers in memory. The
online estimation involved O(Nx(rx + rε + log(Nx)) flops. Contrast this to a straightforward
computation of ˆ̄A†, which would require O(N3

s̄ ) flops and numbers in memory at the offline
phase to form and store inversions at the full resolution over the entire domain, and thenO(N2

s̄ )
flops to compute an inversion at the online phase.
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Figure 8.14: True xt Figure 8.15: Data d

Figure 8.16: xMAP Figure 8.17: xMAP, padding removed

8.3 Uncertainty Quantification

Let us now consider the posterior covariance

Γx|d = Γx − ΓxdΓ
−1
d Γdx (8.30)

= Γx − ΓxA
T (Γe +AΓxA

T + Γ̂ε|x)−1AΓx (8.31)

=

(
Γ−1
x +AT (Γe + Γ̂ε|x)−1A

)−1

. (8.32)
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Note that in this problem the matrix A is not explicitly constructed. Each of the above forms of
the posterior covariance involves prohibitively large inversions. This section instead considers
various methods of computing an approximate posterior covariance.

8.3.1 Sample Posterior Covariance

We can approximate the posterior covariance from samples using recursive QR as

Γ̂x|d = Γ̂x − Γ̂xd(Γe + Γ̂y + Γ̂ε|x)−1Γ̂dx (8.33)

= QxMxQ
T
x −QxMxyQ

T
y (Γe +QyMyQ

T
y +QεMε|xQ

T
ε )−1QyM

T
xyQ

T
y (8.34)

= Qx

(
Mx −MxyQ

T
y (Γe +QyMyQ

T
y +QεMε|xQ

T
ε )−1QyM

T
xy

)
QTx (8.35)

= Qx

(
Mx −MxyQ

T
y (Γe +Qy,εMy,ε|xQ

T
y,ε)
−1QyM

T
xy

)
QTx (8.36)

as described in Section 7.1. In this case, Γe = σ2
eInd so

Γ̂−1
d = (Γe +Qy,εMy,ε|xQ

T
y,ε)
−1 (8.37)

= (σ2
eInd +Qy,εMy,ε|xQ

T
y,ε)
−1 (8.38)

=
1

σ2
e

Ind −
1

σ4
e

Qy,ε(M
−1
y,ε|x +

1

σ2
e

Iry+rε)
−1QTy,ε (8.39)

=
1

σ2
e

Ind −
1

σ4
e

Qy,ε

(
(M−1

y + 1
σ2
e
Iry)

−1 0ry ,rε
0rε,ry (M−1

ε|x + 1
σ2
e
Irε)

−1

)−1

QTy,ε (8.40)

=
1

σ2
e

Ind −
1

σ4
e

Qy(M
−1
y +

1

σ2
e

Iry)
−1QTy −

1

σ4
e

Qε(M
−1
ε|x +

1

σ2
e

Irε)
−1QTε . (8.41)

This can be substituted into Γ̂x|d to form

Γ̂x|d = Qx

(
Mx −MxyQ

T
y (Γe +Qy,εMy,ε|xQ

T
y,ε)
−1QyM

T
xy

)
QTx (8.42)

= Qx

(
Mx −

1

σ2
e

Mxy

(
Iry +

1

σ4
e

(M−1
y +

1

σ2
e

Iry)
−1 +

1

σ4
e

QTyQε(M
−1
ε|x +

1

σ2
e

Irε)
−1QTε Qy

)
MT
xy

)
QTx

(8.43)

= QxMe,x|dQ
T
x (8.44)

noting the orthonormality of the columns ofQy. Note thatQx ∈ RNx×rx andMe,x|d ∈ Rrx×rx .
The diagonal σ̂2 of Γx|d can be constructed by first forming

QxMe,x|d = Bx|d ∈ RNx×rx (8.45)
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and then

Γ̂x|d(j, j) = Bx|d(j, :)Qx(:, j)T = σ̂2(j) (8.46)

which avoids ever forming an Nx ×Nx matrix in memory.
I constructed the above using m = 200 samples. On my laptop, the offline computations

took 34.6 seconds, finding the MAP with Landweber iterations took 0.639 seconds and comput-
ing the posterior covariance diagonal σ̂2 in 0.638 seconds. This demonstrates the computational
efficiency of this form for the posterior covariance. Unfortunately, the above approximate co-
variance diagonal does not seem to be representative. σ̂2 is plotted over Ωx in Figure 8.18. The
“noisy” appearance of σ̂2 indicates that the posterior covariance estimate has not converged i.e.
m = 200 is too small. While m = 200 seems to have been enough to compute the MAP point
estimate, it is not enough to estimate Γ̂x|d. The BAE MAP estimate along the 20’th column
of pixels is shown in Figure 8.19 along with 3σ̂ posterior error intervals. These intervals are
far too wide, likely a result of sample estimates involving xj not having converged/m = 200
being too small. Recall that the conditional mean estimate was also found to involve entities of
too high effective rank to be used effectively.

Figure 8.18: Posterior covariance diagonal σ̂2 Figure 8.19: Estimates on pixel column 20

8.3.2 Sample Posterior Covariance by Diagonal Approximations

In this section, sample covariances are approximated as diagonal. This approach is widely
used, with examples and justifications provided in [65, 106]. The justification in this case is
threefold. Firstly, the ultimate confidence intervals used are assuming a diagonal posterior
covariance. Secondly, the correlation length used in π(x) means Γx is effectively diagonal.
Thirdly and more generally, the sample estimate of e.g. Γ̂x ∈ Rnx×nx requires N2

x numbers
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be estimated from samples whereas by approximating Γx as diagonal i.e. Γ̂(j, j) = σ̂x(j) and
0 otherwise, only the Nx elements of σ̂x need to be estimated from samples. This may allow
estimates of σ̂x to converge in fewer samples than estimates of a full Γ̂x, which is particularly
important when taking inverses.

By taking diagonal approximations, σ̂ is formed as

σ̂2 = diag(Γx|d) (8.47)

= diag(Γx − ΓxdΓ
−1
d Γdx) (8.48)

≈ σ̂2
x − σ̂x � σ̂y � (σ̂2

e + σ̂2
y + σ̂2

ε)
−1 � σ̂y � σ̂x (8.49)

where

σ̂2
x =

1

m

m∑
j=1

(xj − µ̂x)� (xj − µ̂x) (8.50)

and similarly for e.g. σ̂y. The computational cost of approximating the covariances like this is
trivial. I computed m = 200 samples, and forming σ̂ took 0.017 seconds. This estimate of σ̂2

is plotted in Figure 8.20. Note that σ̂ is much higher near the edges of the domain, as expected
as the approximation truncates data from outside Ωx. The diagonal approximation σ̂ in Figure
8.20 appears less noisy than that of Figure 8.18, potentially indicating that this approximation
has converged. The MAP estimate with 3σ̂ posterior error intervals is shown in Figure 8.21.
This posterior error interval appears closer to representative, although still perhaps wider than
necessary.

Figure 8.20: σ̂2, diagonal sample covariances Figure 8.21: Estimates on pixel column 20
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8.3.3 Posterior Residual Estimation of Posterior Covariance

In this section, I make use of the speed at which estimates xMAP can be computed to implement
a posterior residual approach. Recall that estimation of xMAP makes use of m samples. With
the estimation scheme constructed, I compute an additional m̂ samples dj = Ā(x̄j , z̄j , ξ̄j) + ej
and xj = Px,x̄x̄j . From this, I compute the estimate xMAP,j of xj from dj , and the residual
ζj = xMAP,j − xj . Note that if BAE is incorporated correctly, µζ ≈ 0nx,1. The posterior error
interval is approximated as

σ̂2 ≈
1

m̂− 1

m̂∑
j=1

(ζj − µ̂ζ)� (ζj − µ̂ζ) (8.51)

implicitly making a diagonal approximation.
I computed m = 200 samples for BAE in 35 seconds. I then estimated the posterior vari-

ance with m̂ = 50 simulated reconstructions in 37 seconds. The mean posterior residual µ̂ζ is
shown in Figure 8.22. The posterior residual mean seems noisy and has relatively large ampli-
tude, suggesting that either m or m̂ need to be larger. Recall that m = 200 gave satisfactory
point estimates, and m̂ = 50 has already doubled the computational cost at the offline phase.
I continue with m = 200, m̂ = 50, not wanting to increase the computational cost further.
Shown in Figure 8.23 is the posterior residual variance σ̂2

ζ , which I use as an approximation to
the posterior variance. Observe that the residual variance is larger near the edges of Ωx. The
MAP estimate along the 20’th column of pixels is shown in Figure 8.24 with 3σ̂ = 3σ̂ζ poste-
rior error intervals. These intervals appear too wide, and the estimate performs poorly near the
boundary. Shown in Figure 8.25 is the MAP estimate with pixels near the boundary removed,
and a 1σ̂ posterior error interval. The 1σ̂ posterior error interval seems to contain around 99%
of the ground truth, which would be expected for a 3σ̂ posterior error interval.

I increase the offline computational cost by taking m = 1, 000 samples for the BAE stage,
and m̂ = 200 samples for the posterior residual uncertainty quantification. The BAE stage took
514 seconds, and the posterior residual stage took 626 seconds. Online estimation now takes
2.83 seconds as rx and rε increase from 200 to 1,000. rx and rε could be lowered by increasing
the recursive QR tolerances, or by computing further decompositions e.g. UΛUT = RxR

T
x

and truncating.
The MAP estimate is shown in Figure 8.26. The MAP estimate with the edges removed

is shown in Figure 8.27. Note that the MAP estimate with m = 1, 000 does not appear much
better than the estimate with m = 200. This is expected, as the quantities constructed from
samples in my estimation scheme were found to have sufficiently converged at m = 200. The
residual mean is shown in Figure 8.28. Recall that this quantity is expected to converge to 0,
and note the colour scale. The residual variance on Ωx is shown in Figure 8.29. Note that
the variance appears “smooth”, and is largest near the boundary. This is what I predicted the
posterior variance should look like. The MAP estimate along the 20’th column of pixels with
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Figure 8.22: Residual mean µ̂ζ Figure 8.23: Residual variance σ̂2

Figure 8.24: Reconstruction with 3σ̂ CI Figure 8.25: Zoomed reconstruction, 1σ̂ CI

3σ̂ posterior error intervals is shown in Figure 8.30. The MAP estimate along pixel column
20 with the first and last 10 pixels removed and 1σ̂ posterior error intervals is shown in Figure
8.31. Note that the estimates with m = 200, m̂ = 50 and m = 1, 000, m̂ = 200 appear
similar. This suggests that m = 200, m̂ = 50 is sufficient. A more accurate MAP estimate
would require a more fundamental change to the estimation scheme e.g. implement a TV prior.
It could also be that posterior error intervals constructed as σ̂ are not representative of the true
uncertainty, likely due to the correlation structure of the problem.
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Figure 8.26: xMAP from 1,000 BAE samples Figure 8.27: xMAP , padding removed

Figure 8.28: Residual mean µ̂ζ Figure 8.29: Residual variance σ̂2

Figure 8.30: Reconstruction with 3σ̂ CI Figure 8.31: Zoomed reconstruction, 1σ̂ CI
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8.4 Local Posterior Covariance Formation

Suppose only a few elements of Γx|d are desired. For example, Γx|d(Ic=20, Ic=20) = σ̂c=20,
the elements of σ̂2 corresponding to the 20’th column of pixels. I refer to estimating only
Γx|d(Ic=20, Ic=20) as local posterior covariance estimation.

Recall that the posterior covariance is

Γx|d = Γx − ΓxdΓ
−1
d Γdx (8.52)

= Γx − ΓxA
T (Γe +AΓxA

T + Γ̂ε|x)−1AΓx (8.53)

=

(
Γ−1
x +AT (Γe + Γ̂ε|x)−1A

)−1

(8.54)

=

(
Γ−1
x +AT (

1

σ2
e

INx +QεMε|xQ
T
ε )−1A

)−1

(8.55)

and the prior covariance Γx seems to be of high rank. The products Γxx, Ax and Γdx can be
computed rapidly. The diagonal elements of Γx|d can be expressed as

Γx|d(j, j) = eTj Γx|dej (8.56)

= eTj Γxej − eTj ΓxA
TΓ−1

d AΓxej (8.57)

= vTx,jvx,j − vTAx,jΓ−1
d vAx,j (8.58)

where vx,j = Lx(ej) and vAx,j = ALxLxej are vectors that can be computed rapidly with
Fourier transforms. The main hurdle is computing the product vTAx,jΓ

−1
d vAx,j . Such problems

are considered in [120], specifically in Section 7.2. The approach outlined in [120] is com-
plex and difficult to implement. I instead propose estimating vTAx,jΓ

−1
d vAx,j by Landweber

iterations. The aim is to evaluate

vTΓ−1
d v = vT (Γe +AΓxA

T +QεMε|xQ
T
ε )−1v (8.59)

= vT (LeL
T
e +ALxL

T
xA

T +QεLMQ
T
ε )−1v (8.60)

= vT (L̃Td L̃d)v (8.61)

= (L̃dv)T (L̃dv) (8.62)

= uTu (8.63)

So we wish to find u such that Ldu = v where LdLTd = Γd. We can form Ld as

Ld =
(
Le ALx QεLM

)
(8.64)

and we note the only sizeable computation in the above is computing the Cholesky factor
LM ∈ Rrε×rε of Mε|x ∈ Rrε×rε . Recall that rε is likely small relative to nd. The problem is
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now finding u such that Ldu = v. We can find this by Landweber iterations as

uk+1 = uk + β(LTd v − LTd Lduk). (8.65)

While more elegant methods are presented in [120], the above Landweber approach is simple
to implement, parallelisable, requires minimal RAM, is computationally tractable and simple
to understand.

For each entry σ̂(j), the above scheme computes vx,j = Lxej , vxx,j = Lxvx,j and

vAx,j = Avxx,j . This takes O
(

3Nxlog(Nx)

)
flops. If we estimate uj = L̃dvAx,j with

p Landweber iterations (typically small e.g. p = 5), this involves 2p + 1 evaluations of

Ld =
(
Le ALx QεLM

)
, adding O

(
(2p + 1)(Nx + 3Nxlog(Nx) + Nxr

2
ε)

)
flops. Thus

evaluating a single diagonal element involves O
(

2(p+ 1)Nx(3log(Nx) + r2
ε)

)
flops.

Computing the entirety of σ̂ ∈ RNx as above would require repeating the above steps Nx

times. This represents a large (albeit tractable and parallelisable) computational cost. The
above approach is useful when uncertainty quantification is only desired for a small subregion,
in this example only along the 20’th column of pixels.

Entire columns of Γx|d can be computed similarly to the above as Γx|d(:, j) = Γx|dej .
However, we wish to avoid forming the entire matrix Γx|d ∈ R16,384×16,384 in memory, hence
the emphasis on just computing diagonal elements. The flop count for evaluating the entire
column is of the same order as for evaluating just a diagonal element. In this example, the
computational cost of estimating an element σ̂(j) and a posterior residual ζj = xMAP,j − xj is
comparable.

I evaluate σ̂c=20, the posterior variances along the 20’th column of pixels in the image
with the above Landweber type approach. The 200 BAE samples computed in 34 seconds.
Computing σ̂c=20 takes another 17 seconds. Computing the MAP estimate over Ωx took 0.63
seconds. The MAP estimate xMAP,c=20 along the 20’th pixel column with 3σ̂c=20 posterior
error intervals is shown in Figure 8.32. The estimate with padding pixels removed and only
1σ̂ posterior error intervals is shown in Figure 8.33. Note that the posterior error intervals
appear too wide, consistent with earlier estimates in this chapter. The local posterior covariance
posterior error intervals of Figure 8.33 are wider than the posterior variance estimates of Figure
8.25 of Section 8.3.3, and compute in about half the time. The posterior residual approach
however produces uncertainty estimates over all 16, 384 pixels, whereas the local posterior
covariance approach only estimates uncertainty of the 128 pixels of interest, the 20’th column.
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Figure 8.32: MAP estimate with 3σ̂ CI Figure 8.33: Padding removed, 1σ̂ CI

8.5 Discussion

For this problem , the effective rank of the prior covariance Γx was found to be too high for
approximations such as

µ̂x|d=dt = µ̂x +QxMxyQ
T
y

(
Γ−1
e + Γ−1

e Qy
(
M−1
y +QTy Γ−1

e Qy
)−1

QTy Γ−1
e

)
(dt − µ̂d)

(8.66)

with approximate posterior covariance

Γ̂x|d = Qx

(
Mx −MxyQ

T
y (Γe +Qy,εMy,ε|xQ

T
y,ε)
−1QyM

T
xy

)
QTx (8.67)

to be computed reliably from a reasonable number of samples. In contrast, the Fourier space
BAE type local sample estimate

xg = F−1(gπ �F(d)) (8.68)

was found to give reasonable results from just m = 200 samples. This estimate was then used
as the first step x0 of the Landweber iteration

xk+1 = xk + β(ÂT d̂− ÂT Âxk) (8.69)

used to compute the MAP estimate

xMAP =

(
L̃ν|x(A+ Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(d+ Γ̂εxΓ̂−1

x µx − µ̂ε)
L̃xµx

)
(8.70)

= Â†d̂ (8.71)
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which gave fairly good estimates of xt with reasonable computational cost.
Computations were performed on a 2010 laptop with 2.4 GHz dual core CPU, 4 GB of

RAM and 250 GB hard drive. The MAP estimate could be found as xMAP = Â†d̂. Note
however that Â ∈ R(nd+Nx)×Nx . Treated as a full matrix, Â has 536,870,912 entries. In
IEEE 754 double-precision binary floating-point format, such a matrix would occupy 4 GB of
memory. I attempted to compute the MAP as xMAP = Â\d̂ in MATLAB, however the laptop
shut down after several hours.

Several approximation posterior error intervals were tried. The most representative inter-
vals were found by the posterior residual approach of Section 8.3.3. An additional m̂ = 50
samples ζj = xMAP,j − xj were computed, and the diagonal posterior residual approximation

σ̂2 ≈
1

m

m∑
j=1

(ζj − µ̂ζ)� (ζj − µ̂ζ) (8.72)

was used. While all the posterior error intervals attempted were found to be too wide, this is
likely due to the strong correlation in the posterior not being explicitly accounted for in the
posterior error estimates by e.g. computing trust regions from the entire covariance, not just
the diagonal. Notably, the posterior residual estimates found with m̂ = 200 converged to a
similarly wide posterior error estimate.

By the methods of this chapter, the MAP estimate took 35 seconds of offline computation
and 0.63 seconds of online computation. The posterior residual construction of the posterior
error estimates took an additional 37 seconds of offline computation. The MAP estimate (with
padding removed) and posterior error estimate σ̂2 over Ωx can be seen in Figures 8.17 and 8.23
respectively. The MAP estimate with 1σ̂ confidence interval along the 20’th column of pixels
with padding removed is shown in Figure 8.31. The problem of this chapter demonstrates the
effectiveness of combining recursive QR (to construct low rank sample entities), local sample
approximation (the Fourier space BAE type local sample estimate) and BAE.



Chapter 9

X-Ray Tomography

This chapter applies methods of this thesis to the problem of x-ray tomography, also known
as computed tomography (CT). The analysis of CT in this thesis is brief, as the problem is
only being used to demonstrate the methods of Chapters 6 and 7. This chapter follows the
conventions of [10, 123]. More information on CT can be found in [124], while [4, 5] consider
CT more explicitly in terms of inverse problems. This chapter is primarily concerned with the
application of the methods of this thesis to local tomography. The sections prior to 9.3 are
primarily provided for context on the structure of the problem, so the analysis is light.

In x-ray tomography, an x-ray source and detector sit opposite each other in a gantry, with
an object in the middle. The source emits a burst of x-rays, which pass through the object,
are partially absorbed, and then arrive at the detector. The detector records a standard x-ray
“shadow” image. Each shadow image is called an exposure. In x-ray tomography, exposures
are made at various positions around the object as the gantry is moved, and the exposures are
combined to produce a 3D estimate of the internal density distribution of the object. The density
of a material is related to the wavelength of the x-rays used and the absorption coefficient. In
this thesis, we consider estimation of the absorption coefficient distribution assuming x-rays of
a homogeneous wavelength.

This chapter considers 2D x-ray tomography. That is, the object is represented in 2D and
each exposure produces a 1D “image”. The 2D x-ray tomography problem is equivalent to
evaluating a single independent “slice” of the 3D tomography problem [5, 10, 33]. The 2D
estimates can be combined into a 3D estimate [33].

This chapter considers sparse full angle CT. Only 18 exposures are used, hence sparse,
and the gantry is rotated 180◦, hence full angle [123]. Section 9.3 considers the sparse full
angle local tomography problem in which only a subsection of the object is reconstructed.
Traditional CT algorithms such as Radon transforms with filtered back projection are reviewed
in [124]. However, these traditional methods are known to produce unsatisfactory estimates
when applied to sparse CT [10, 125, 123, 126, 127]. The dense full angle CT problem is mildly

177
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ill-posed, and the sparse full angle CT problem is more ill-posed [5, 33, 125].
Let Ω be a domain, and t ∈ Ω. Consider an x-ray beam, hereon called a pencil. Let L be

the path of the pencil, going from the x-ray source to a pixel of the detector. Let I(t) be the
intensity of the pencil at t ∈ Ω. Let s(t) ∈ R be the absorption coefficient at t ∈ Ω. Over a
small distance dt the intensity changes as

dI

I
= −s(t)dt. (9.1)

Let I0 be the intensity of the pencil when emitted and I1 the intensity of the pencil when
detected. Therefore ∫

L
s(t)dt = −

∫
L

I′(t)

I(t)
dt = log(I0)− log(I1) (9.2)

i.e. the measured data are line integrals of s(t) along pencil paths L. Let y(j) = log(I0,j) −
log(I1,j) be the predicted measured value corresponding to the j’th pencil. Let s ∈ RNs be a
finite dimensional approximation of s e.g. a pixelated image. Let

y = As (9.3)

where A ∈ Rnd×Ns is a finite dimensional forward operator and y(j) ≈ y(j). The j’th row
of A is an approximation to

∫
Lj

s(t)dt, the integral of s along the line Lj , the path of the j’th
pencil. Let

d = As+ e (9.4)

where d ∈ Rnd is the data and e ∼ N (0nd,1, σ
2
eInd) is the measurement noise i.e. this is a

linear A additive Gaussian noise problem.
An example beam intensity is shown in Figure 9.1. Observe how the intensity decays faster

where the absorption coefficient is higher. Let each exposure consist of np pencils. Note that
the number of pencils is the number of pixels on the x-ray detector. Let na be the number of
exposures. The data dimension is therefore nd = nanp.

9.1 CT with Coarse Discretisation

This section considers a coarse discretisation finite dimensional approximation to the sparse
full angle CT problem. The purpose of this section is to demonstrate some of the structure
of the CT problem. By using a coarse discretisation, the structure of the CT problem can be
explored without also employing the methods of this thesis.
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Figure 9.1: Beam intensity decay

Let Ω = [1, 64]× [1, 64]. Let

t =



1 1
2 1
3 1

...
...

64 1
1 2
...

...
64 64


∈ R4,096×2 (9.5)

be the spatial discretisation i.e. ∆t = 1. Let x(j) = s(t(j, :)) be the finite dimensional
approximation to the absorption coefficient distribution in Ω. Let nx = 64 and Nx = 4, 096.
The ground truth xt is shown in Figure 9.2. The np = 64 pencils of a single exposure are
shown in Figure 9.4. The na = 18 different exposures are shown in Figure 9.5, where each
“cone” corresponds to an exposure. This results in nd = nanp = 1, 152. The forward model is

d = Ax+ e = y + e (9.6)

where e ∼ N (0nd,1, σ
2
eInd) and A is explicitly constructed. Note that the forward operator A

is a matrix in Rnd×Nx = R1,152×4,096 i.e. this is an underdetermined problem. The noiseless
sinogram corresponding to xt is shown in Figure 9.3. Each column of the sinogram is a 1D
“image” corresponding to an exposure. The leftmost column of Figure 9.3 corresponds to the
exposure shown in Figure 9.4.
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Figure 9.2: Ground truth xt Figure 9.3: Sinogram of yt

Figure 9.4: X-ray pencils Figure 9.5: Exposure angles

Each row of A corresponds to a pencil. Each pencil passes through approximately 3nx of
Nx pixels in the object, so A(j, :) ∈ R1×Nx has approximately 3nx nonzero entries i.e. A is
sparse. The first 64 rows of A are shown in Figure 9.6, corresponding to the first exposure as
shown in Figure 9.4.

Because the dimensions of the problem in this section are relatively small, I can ap-
proach the inverse problem in a straightforward manner. A Gaussian smoothness prior x ∼
N (0nx,1,Γx) is constructed with the smoothness covariance function of Section 5.1.1. The
factor Lx is computed by the Cholesky algorithm. L̃x = L−1

x is computed by back substitu-
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Figure 9.6: Matrix A(1 : 64, :) for a single exposure with 64 pencils of a 64× 64 pixel object

tion. This entire process took 7 minutes on a 2010 laptop with 2.4 GHz dual core CPU, 4GB
of RAM and 250 GB hard drive. The MAP estimate

xMAP = min
x

{∥∥∥L̃e(dt −Ax)
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(9.7)

=

( 1
σe
A

L̃x

)†( 1
σe
dt

0nx,1

)
(9.8)

= Â†d̂t (9.9)

was found as Â\ d̂ in MATLAB, where Â and d̂ were formed explicitly. Computing Â\ d̂ took
112 seconds.

The ground truth xt of Figure 9.2 is reproduced in Figure 9.7. The forward evaluation
y = Axt is visualised as a sinogram in Figure 9.8. The data dt = Axt + et is shown in Figure
9.10, where σe ≈ 0.01max(y). The corresponding MAP estimate is shown in Figure 9.9. Note
that an inverse crime is committed when the MAP estimate of this section is computed.

9.2 A Practical CT Implementation

This section will consider a higher dimensional case of the sparse full angle CT problem. The
straightforward approach of Section 9.1 is not practical for this case with the computational
resources available. This section makes use of the proposed methods of Chapters 6 and 7.
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Figure 9.7: Object xt Figure 9.8: Noiseless sinogram of yt = Axt

Figure 9.9: MAP estimate Figure 9.10: Measured sinogram dt = Axt+et

Let Ω = [1, 512]× [1, 512]. Let

t̄ =



1 1
2 1
3 1

...
...

512 1
1 2
...

...
512 512


∈ R262,144×2 (9.10)
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be a spatial discretisation i.e. ∆t̄ = 1. Let s̄(j) = s(t̄(j, :)) be the finite dimensional approxi-
mation to the absorption coefficient distribution in Ω. Let ns̄ = 512 and Ns̄ = 262, 144. Let
the region of interest be the front and central segment Ωx = [1, 256]× [129, 384] i.e.

t̄x =



1 129
2 129
3 129

...
...

256 129
1 130
...

...
256 384


∈ R65,536×2 (9.11)

is a spatial discretisation of Ωx. Let x̄(j) = s(t̄x(j, :)). Let nx̄ = 256 and Nx̄ = 65, 536. Let
t̄z = t̄ \ t̄x and z̄(j) = s(t̄z(j, :)).

Let

tx =



1 129
3 129
5 129

...
...

256 129
1 131
...

...
256 384


∈ R16,384×2 (9.12)

be the “sufficient resolution” discretisation of Ωx i.e. ∆t = 2. Let x(j) ≈ s(tx(j, :)). Let
nx = 128 and Nx = 16, 384. Let

Px,x̄ =
1

4

1 1 0 0 01,nx̄ 1 1 0 0 01,Nx̄−nx̄−8

0 0 1 1 01,nx̄ 0 0 1 1 01,Nx̄−nx̄−8
...

...
...

...
...

...
...

...
...

...

 ∈ RNx×Nx̄ (9.13)

be such that x = Px,x̄x̄, Px̄,s̄ ∈ RNx̄×Ns̄ be such that x̄ = Px̄,s̄s̄ and Px,s̄ = Px,x̄Px̄,s̄ ∈
RNx×Ns̄ . Let Px̄,x = P †x,x̄ = 4P Tx,x̄. Let Ps̄,x = P †x,s̄ = 4P Tx̄,s̄P

T
x,x̄.

Let there be np = 500 pencils at each exposure. Let na = 18 exposures be taken, at the
same angles as in the earlier section. The accurate forward model is

d = ȳ + e = Ās̄+ e = Ā(x̄, z̄) + e (9.14)
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where Ā ∈ R9,000×262,144. Let the simple model be

d = y + ε+ e ≈ y + e = Ax+ e = ĀPs̄,xx+ e (9.15)

which allows us to construct A ∈ R9,000×16,384 without recomputing the pencil paths.
Let

¯̄t =



1 1
1.5 1
2 1

...
...

512 1
1 1.5
...

...
512 512


∈ R1,048,576×2 (9.16)

be a spatial discretisation i.e. ∆¯̄t = 0.5. Let ¯̄s(j) = s(¯̄t(j, :)). Let

d = ¯̄y + e = ¯̄A¯̄s+ e (9.17)

be the very accurate model used for simulating data. The test image s̄t used in this problem is
a 512 × 512 image, so ¯̄st ∈ R1,048,576 was constructed by upsampling and convolving with a
narrow kernel.

This chapter uses a real world x-ray CT reconstruction of a human head as the ground
truth s̄t, shown in Figure 9.11. This image was taken from wikimedia commons, uploaded by
Mikael Häggström of the Department of Radiology at Uppsala University Hospital under an
open license. The exposure “cones” are shown in Figure 9.12. The ground truth in the region
of interest x̄t is shown in Figure 9.13. The ground truth in the region of interest at the desired
discretisation is shown in Figure 9.14.

9.2.1 Full Domain Inversion

In this subsection, the MAP estimate of s̄t is computed with the accurate model Ā. The model
Ā is also used when computing dt, so an inverse crime is committed during the estimation. The
purpose of this subsection is to demonstrate the highest reasonable quality for MAP estimates in
this problem. This problem is sufficiently high dimensional that some of the methods proposed
in this thesis need to be used for estimation to be computationally reasonable. Note that BAE
is not used in this subsection. The analysis in this Subsection is comparatively brief, as the aim
is primarily to provide a point of comparison for the estimates in Section 9.3.
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Figure 9.11: Ground truth s̄t on Ω Figure 9.12: Exposures being taken

Figure 9.13: Ground truth x̄t on Ωx Figure 9.14: Ground truth xt on Ω at coarse
discretisation

Let s̄ be normally distributed with a smoothness prior. The filter Ls̄ is constructed directly
with Fourier transforms as in Chapter 8. Draws are computed as

s̄j = µs̄ + Ls̄(wj) (9.18)

= µs̄ + F−1

(
kf,s̄ �F(wj)

)
(9.19)

where F(ks̄) = kf,s̄ ∈ RNs̄ is the Fourier transform of a Gaussian kernel. A kernel of width 2
and amplitude 0.7 was found to produce draws with features on the scale desired. The innova-
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tion filter is formed as

wj = L̃s̄(s̄j − µs̄) = F−1

(
k̃f,s̄ �F(s̄j − µs̄)

)
(9.20)

where k̃f,s̄(j) = 1
kf,s̄(j)

. Note that kf,s̄ can be computed in O
(
Ns̄log(Ns̄)

)
flops, computing

k̃f,s̄ takes Ns̄ flops, and k̃f,s̄ ∈ RNs̄ and kf,s̄ ∈ RNs̄ occupy around 2MB of memory. In
contrast, Γs̄ ∈ RNs̄×Ns̄ occupies around 540 GB of memory.

The MAP estimate found with the model d = Ās̄+ e and the above prior is

s̄MAP = min
s̄

{∥∥∥L̃e(d− Ās̄− µd)∥∥∥2

2
+
∥∥∥L̃s̄(s̄− µs̄)∥∥∥2

2

}
(9.21)

=

(
L̃eĀ

L̃s̄

)†(
L̃e(d− µd)
L̃s̄µs̄

)
(9.22)

= Â†s̄d̂s̄. (9.23)

Recall that computations in this thesis are performed on a 2010 laptop with 2.4 GHz dual core
CPU, 4GB of RAM and 250 GB hard drive. The matrix Âs̄ stored as full would not even fit
on the hard drive. The MAP estimate is instead computed by Landweber iterations, similar to
Chapter 8. The iterates are computed as

s̄k+1 = s̄k + β(ÂTs̄ d̂s̄ − ÂTs̄ Âs̄s̄k) (9.24)

where

ÂTs̄ d̂s̄ =
(
ĀT L̃Te L̃Ts̄

)(L̃e(d− µd)
L̃s̄µs̄

)
(9.25)

= ĀTΓ−1
e (d− µd) + Γ−1

s̄ µs̄ (9.26)

=
1

σ2
e

ĀT (d− µd) + Γ−1
s̄ µs̄ (9.27)

and

ÂTs̄ Âs̄s̄ =
(
ĀT L̃Te L̃Ts̄

)(L̃eĀ
L̃s̄

)
s̄ (9.28)

= ĀTΓ−1
e Ās̄+ Γ−1

s̄ s̄ (9.29)

=
1

σ2
e

ĀT Ās̄+ Γ−1
s̄ s̄ (9.30)
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where Γ−1
s̄ s̄ is evaluated by the fast Fourier transform algorithm. The sparsity of Ā and the

FFT form of Γs̄ allows Landweber iterations to be computed rapidly, with each iterate requiring

O
(
Ns̄log(Ns̄) + ndns̄

)
flops due to the FFT evaluation of Γ−1

s̄ s̄ and the sparsity of Ā.

The stepsize β was chosen by the same method used in Chapter 8. I computed several

bj =
‖ÂT Âwj‖
‖wj‖ where wj is a white noise sample. I found that maxj{bj} ≈ 100, so took

β = 1
1,000 . I computed 100 Landweber iterates, however the iterates were found to change

little after iterate 15. For online estimation of the MAP, I chose to take 20 iterates.

Figure 9.15: Ground truth s̄t Figure 9.16: Solution s̄MAP

The ground truth s̄t is reproduced in Figure 9.15. The MAP estimate computed in 1.82
seconds with 20 Landweber iterations is shown in Figure 9.16. While the ground truth can be
partially discerned from the MAP, there appears to be “nonsmooth” terms. This appears to be
a consequence of pencils being relatively sparse relative to the density of pixels.

Smoothness can be more explicitly enforced in the estimation by “re-regularising” each
Landweber iterate s̄k. The iteration becomes

ŝj+1 = Ls̄s̄j+1 = s̄j + β(ÂTs̄ d̂s̄ − ÂTs̄ Âs̄s̄j) (9.31)

with the computational time of computing 20 iterates rising to 2.1 seconds. The ground truth is
reproduced in Figure 9.17. The MAP estimate found with the above iteration scheme is shown
in Figure 9.18. The streaks in the image are typical of sparse angle CT [5, 10]. Note that many
of the features in the ground truth can be resolved in the MAP estimate.
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Figure 9.17: Ground truth s̄t Figure 9.18: Solution s̄MAP , re-regularised

9.3 Local Tomography

This section considers the local tomography problem, in which only a a subset of the object
density distribution is estimated [124, 128, 129, 130]. The advantage of local tomography is
that x-ray exposure can be better restricted to the region of interest. However, the exposures
used in this section are the same as in the non-local tomography problem of Subsection 9.2.1.
This is done to maintain a level of consistency when comparing the quality of the estimates.
Note that the local sparse angle tomography problem is even more ill-posed than the non-local
sparse CT problem [10]. This section considers estimating xt ∈ RNx as shown in Figure
9.14 without estimating all of s̄t ∈ RNs̄ . Note that a coarse discretisation is also used. This
is done to further reduce computational cost at the online stage and further demonstrate the
effectiveness of the BAE approach.

This section makes use of samples s̄j , xj = Px,s̄s̄j , ȳj = Ās̄j and yj = Axj where s̄j
is drawn using Fourier transforms as described in the previous section. Samples are stored in
terms of QR decompositions as described in Section 6.4.2 e.g. samples of x are used to form
Qx ∈ RNx×rx and Rx ∈ Rrx×m where rx is the “effective rank” of the sample covariance of x
and m is the number of samples. This is similar to the approach of Section 8.2.

9.3.1 Conditional Mean with BAE

Let us first consider the conditional mean

µx|d = µx + ΓxdΓ
−1
d (d− µd) (9.32)
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which we approximate as

µ̂x|d = µx + Γ̂xdΓ̂
−1
d (d− µ̂d) (9.33)

= µx +
1

m
QxRxR

T
ȳQ

T
ȳ

(
Γe +

1

m
QȳRȳR

T
ȳQ

T
ȳ

)−1

(d− µ̂d) (9.34)

= µx +QxMxȳQ
T
y

(
Γe +QȳMȳQ

T
ȳ

)−1

(d− µ̂d) (9.35)

noting that samples of x and ȳ = Ās̄ are used. Note that approximate model A is not used
in the construction of this estimate, and the approximation error does not explicitly appear.
Construction of the recursive QR sample conditional mean above is covered in greater detail in
Section 7.1. Noting that Γe = σ2

eInd , Γ̂−1
d can be expanded as

Γ̂−1
d =

(
Γe +QȳMȳQ

T
ȳ

)−1

(9.36)

=

(
σ2
eInd +QȳMȳQ

T
ȳ

)−1

(9.37)

=
1

σ2
e

Ind −
1

σ4
e

Qȳ(M
−1
ȳ +

1

σ2
e

Irȳ)
−1QTȳ (9.38)

so the sample conditional mean estimate can be expressed as

µ̂x|d = µx +QxMxȳQ
T
y

(
1

σ2
e

Ind −
1

σ4
e

Qȳ(M
−1
ȳ +

1

σ2
e

Irȳ)
−1QTȳ

)
(d− µ̂d) (9.39)

where care should be taken in the order of operations to avoid forming large matrices e.g.
QxMxȳQ

T
y should not be explicitly formed.

Each of the m samples used in the construction of the above sample conditional mean

estimate requires O
(
Ns̄log(Ns̄) + ndns̄

)
flops to compute. The matrices Mȳ ∈ Rrȳ×rȳ and

(M−1
ȳ + 1

σ2
e
Irȳ) ∈ Rrȳ×rȳ need to be inverted. This can be done in parallel with samples being

computed as described in Section 6.4.2. Otherwise, the inverses can be computed with O(r3
ȳ)

additional flops. At the online stage, computing µ̂x|d requiresO
(
nxrx +ndrȳ + rȳ(rȳ + rx)

)
flops and numbers stored in memory.

The sample conditional mean as expressed in Equation (9.39) was computed with m =

5, 000 samples in 73 minutes. A relatively low tolerance τ = R(1,1)
10,000 was used, resulting in

rȳ = nd = 3, 600 and rx = m = 5, 000. Further samples were not computed as the offline
computational cost is already unacceptably high. Note that the prior in this problem has cor-
relation length l ≈ 2, and the discretisation is ∆t = 2. The prior covariance Γx is therefore
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Figure 9.19: Ground truth xt Figure 9.20: Sample conditional mean
estimate µ̂x|d=dt

effectively diagonal, as described in Section 5.1.1. The prior has high effective rank, so sample
entities such as Qx and Mxȳ may need O(Nx) samples to be estimated effectively.

The ground truth xt is reproduced in Figure 9.19. The sample conditional mean estimate
with data simulated by ¯̄A and 1% additive white noise is shown in Figure 9.20. The sample
conditional mean estimate is quite poor, although the offline stage does compute in only 1.5
seconds. The high effective rank of Γx means that the sample conditional mean µ̂x|d requires
O(Nx) samples be used if it is to be representative of the true conditional mean µx|d. Given
that Nx = 16, 384 and m = 5, 000 samples was already relatively computationally costly to
compute, a sample conditional mean type approach seems badly suited to this problem.

9.3.2 MAP with BAE

The sample entities used in the construction of a sample mean estimate as described in Section
7.1 were found to be of too high rank to be estimated from an acceptably small number of
samples. This is similar to the case of Chapter 8. This subsection implements an iterative MAP
estimate with BAE as described in Section 7.4 and applied in Section 8.2.

In this section, the sparse approximate forward model A = ĀPs̄,x is used with BAE. The
model used for estimating xt is

d = Ax+ µ̂ε|x + e (9.40)
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leading to the MAP estimate

xMAP =

(
L̃ν|x(A+ Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(dt + Γ̂εxΓ̂−1

x µx − µd − µ̂ε)
L̃xµx

)
(9.41)

= Â†d̂t (9.42)

which is found by Landweber iterations

xk+1 = xk + β(ÂT d̂t − ÂT Âxk) (9.43)

where

ÂT d̂ =
(

(A+ Γ̂εxΓ̂−1
x )T L̃Tν|x L̃Tx

)(L̃ν|x(dt + Γ̂εxΓ̂−1
x µx − µd − µ̂ε)

L̃xµx

)
(9.44)

= (A+ Γ̂εxΓ̂−1
x )TΓ−1

ν|x(dt + µω) + Γ−1
x µx (9.45)

where

µω = Γ̂εxΓ̂−1
x µx − µd − µ̂ε (9.46)

with

Γ̂εxΓ̂−1
x = QεRεR

T
x (RxR

T
x )−1QTx (9.47)

and

Γ−1
ν|x = (Γe + Γ̂ε|x)−1 (9.48)

= (Γe +QεMε|xQ
T
ε )−1 (9.49)

= Γ−1
e − Γ−1

e Qε(M
−1
ε|x +QTε Γ−1

e Qε)
−1QTε Γ−1

e (9.50)

=
1

σ2
e

Ind −
1

σ4
e

Qε(M
−1
ε|x +

1

σ2
e

Irε)
−1QTε (9.51)

so

ÂT d̂t = (A+ Γ̂εxΓ̂−1
x )TΓ−1

ν|x(dt + µω) + Γ−1
x µx (9.52)

= (A+ Γ̂εxΓ̂−1
x )T

(
1

σ2
e

Ind −
1

σ4
e

Qε(M
−1
ε|x +

1

σ2
e

Irε)
−1QTε

)
(dt + µω) + Γ−1

x µx

(9.53)
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also

ÂT Â =
(

(A+ Γ̂εxΓ̂−1
x )T L̃Tν|x L̃Tx

)(L̃ν|x(A+ Γ̂εxΓ̂−1
x )

L̃x

)
(9.54)

= (A+ Γ̂εxΓ̂−1
x )TΓ−1

ν|x(A+ Γ̂εxΓ̂−1
x ) + Γ−1

x (9.55)

= (A+ Γ̂εxΓ̂−1
x )T

(
1

σ2
e

Ind −
1

σ4
e

Qε(M
−1
ε|x +

1

σ2
e

Irε)
−1QTε

)
(A+ Γ̂εxΓ̂−1

x ) + Γ−1
x

(9.56)

which can be computed efficiently with careful application of the order of operations. Further
details of this approach can be found in Sections 7.4 and 8.2.

The same stepsize β = 1
1,000 from Section 9.2.1 is used for the Landweber iteration. How-

ever, the iterates were found to effectively converge after 8 iterates, so in this section the online
stage is computed with 10 Landweber iterates to further reduce computational cost.

Figure 9.21: Ground truth xt Figure 9.22: xMAP with BAE

In this section, evaluations of Γ−1
x x is formed from samples. Note that draws of x are

computed as xj = Px,s̄s̄j = Px,s̄F−1(F(ks) � F(wj)). The whitening filter k̃ on x is con-
structed such that wj ≈ F−1(F(k̃)� F(s̄j)) from the samples. Forming the filter in this way
is similar to the deconvolution filter described in Section 6.8. Constructing the filter in this
way ensures discretisation invariance and allows the whitening filter to be implemented with
the FFT algorithm.

The offline stage of computing m = 200 samples and forming the quantities ÂT Â and
ÂT d̂ as above took 24.2 seconds on a 2010 laptop with 2.4 GHz dual core CPU, 4GB of RAM
and 250 GB hard drive. The data dt was simulated as dt = ¯̄As̄t + et as described in the
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introduction to Section 9.2 to avoid committing an inverse crime. Note that the ground truth
s̄t comes from real data, but the data dt used in the estimation is synthetic. The online stage
of estimating xMAP from data dt with 10 Landweber iterations took 0.27 seconds. The ground
truth xt is reproduced in Figure 9.21. The MAP estimate xMAP is shown in Figure 9.21. Note
that many of the features can be resolved. I am pleased with this result, especially considering
the offline and online computational cost, and the quality of estimates expected from sparse
local tomography.

9.3.3 Uncertainty Quantification by Posterior Residuals

In this section, uncertainty in the estimate xMAP is quantified by the posterior residual ap-
proach described in Section 6.9 and applied in Section 8.3.3. This approach was chosen as
MAP estimates can be computed rapidly, and the memory requirements are low. Residuals
ζj = xMAP,j − xj are computed from m̂ = 200 samples, adding 63.5 seconds to the offline
computation stage. The estimate variance is estimated as

σ̂2 =
1

m̂

m̂∑
j=1

(ζj − µ̂ζ)2 (9.57)

from which posterior error intervals are formed. Recall that µ̂ζ ≈ 0nx,1 when m and m̂ are
large enough. The residual mean µ̂ζ is shown in Figure 9.23. Note that µ̂ζ ≈ 0, implying that
m and m̂ are sufficiently large. The MAP estimate with 3σ̂ posterior error intervals along the
20’th column of pixels is shown in Figure 9.24. Note that the MAP estimate captures major
features of the ground truth, and the posterior error intervals tightly contain the ground truth. I
consider this to be a good result.

9.4 Discussion

This chapter primarily considers local tomography, estimating xt from dt. We found that the
effective rank of the prior covariance Γx was too high for approximations such as

µ̂x|d=dt = µ̂x +QxMxyQ
T
y

(
Γ−1
e + Γ−1

e Qy
(
M−1
y +QTy Γ−1

e Qy
)−1

QTy Γ−1
e

)
(dt − µ̂d)

(9.58)

with approximate posterior covariance

Γ̂x|d = Qx

(
Mx −MxyQ

T
y (Γe +Qy,εMy,ε|xQ

T
y,ε)
−1QyM

T
xy

)
QTx (9.59)

to be computed reliably from a reasonable number of samples. The estimate µ̂x|d=dt found
from 5, 000 samples is shown in Figure 9.20, and is clearly lacking.



194 CHAPTER 9. X-RAY TOMOGRAPHY

Figure 9.23: Posterior residual mean µ̂ζ Figure 9.24: MAP estimate, posterior error
interval and ground truth along pixel column

20

The problem of high rank entities is similar to that of Chapter 8, so a similar approach was
taken. The MAP

xMAP =

(
L̃ν|x(A+ Γ̂εxΓ̂−1

x )

L̃x

)†(
L̃ν|x(d+ Γ̂εxΓ̂−1

x µx − µ̂ε)
L̃xµx

)
(9.60)

= Â†d̂ (9.61)

was estimated by Landweber iterations

xk+1 = xk + β(ÂT d̂− ÂT Âxk) (9.62)

starting at x0 = µx. The BAE sample entities e.g. Γ̂ν|x were computed from m = 200
samples with recursive QR in 24.2 seconds on a 2010 laptop with 2.4 GHz dual core CPU, 4
GB of RAM and 250 GB hard drive. An additional m̂ = 50 samples ζj = xMAP,j − xj were
computed, and the diagonal posterior residual approximation

σ̂2 ≈
1

m

m∑
j=1

(ζj − µ̂ζ)� (ζj − µ̂ζ) (9.63)

was used. This added 63.5 seconds of computation to the offline stage. The MAP estimate
computes in 0.27 seconds at the online stage, and is shown in Figure 9.22. The MAP estimate
with posterior error estimates down the 20’th column of pixels is shown in Figure 9.24. The
major features of the ground truth can be discerned from the MAP estimate and the posterior
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error estimates support the ground truth. Considering the offline and online computational
cost of the local CT implementation in this chapter alongside the inherent limitations of sparse
local CT, I consider this chapter a powerful demonstration of the effectiveness of the methods
proposed in this thesis.
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Chapter 10

Simplified Conductivity Imaging

This chapter considers a simplified problem related to Electrical Impedance Tomography (EIT).
The purpose of this chapter is to demonstrate application of some of the methods of this thesis
to a nonlinear inverse problem. More details on EIT in the context of inverse problems can be
found in [4, 5]. The problem considered in this chapter is discussed in greater detail in [131],
the author of which assisted in constructing the forward problem of this chapter.

Consider the Poisson equation

−∇ ·
(
ψ(t)∇u(t)

)
= 0 in Ω (10.1)

u(t) = gD(t) on ∂ΩD (10.2)

ψ∇u(t) · η = gN (t) on ∂ΩN (10.3)

where t ∈ Ω = [0, 1] × [0, 1] is a spatial variable, ∂Ω = ∂ΩD ∪ ∂ΩN is the boundary of Ω,
∂ΩD is the Dirichlet boundary, ∂ΩN is the Neumann boundary, η = η(t) is the outward facing
unit normal vector at t, gD(t) is the Dirichlet boundary condition and gN (t) is the Neumann
boundary condition. Recall that

∇u(t) =

(
∂u(t)
∂t(1)
∂u(t)
∂t(2)

)
(10.4)

is the gradient of u and

∇ ·
(
ψ(t)∇u(t)

)
=

∂

∂t(1)

(
ψ(t)

∂u(t)

∂t(1)

)
+

∂

∂t(2)

(
ψ(t)

∂u(t)

∂t(2)

)
(10.5)

is the divergence of ψ(t)∇u(t).

197
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Let tN ∈ RndN×2 and tD ∈ RndD×2, where tN (j, :) ∈ ∂Ω and tD(j, :) ∈ ∂Ω. Let

td =

(
tD
tN

)
∈ Rnd×2 (10.6)

where nd = ndD + ndN . Let

u(tD) = yD ∈ RndD (10.7)

ψ(tN )∇u(tN ) · η = yN ∈ RndN (10.8)(
yD
yN

)
= y ∈ Rnd (10.9)

where η is the outward facing unit vector normal to ∂Ω at tN (j, :). Let

dD = yD + eD (10.10)

dN = yN + eN (10.11)

d = y + e =

(
yD
yN

)
+

(
eD
eN

)
(10.12)

be the data i.e. boundary measurements of u or ∂u(tN )
∂η with additive noise. dD is called the

Dirichlet data and dN is the Neumann data. The problem of estimating ψ from boundary
measurements such as y is related to Calderóns Problem [132, 133].

In this chapter, ψ(t) is the conductivity, and u(t) is the potential. The terms conductivity
and potential come from EIT [4, 5, 15, 134]. Let

ψ(t) = exp
(
x(t)

)
(10.13)

and

ψ(t(j, :)) = ψ(j) = exp
(
x(j)

)
= exp

(
x(t(j, :))

)
(10.14)

and the problem considered in this chapter is estimating xt. In EIT electrodes are attached to the
boundary of an object to apply and measure electric fields. This data is then used to estimate the
internal conductivity ψ of the object. A review of the connection between Calderóns Problem
and EIT can be found in [135].

In this chapter,

∂Ω = ∂ΩN (10.15)

and

y = yD (10.16)
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i.e. Neumann boundary condition and Dirichlet data. In order for u to be unique, we addition-
ally impose ∫

Ω
u(t)dt = 0 (10.17)

and the charge conservation condition [4, 5, 131]∫
∂Ω
gN (t)dt = 0 (10.18)

to arrive at the the continuum model [136]. Let gN (t) = 1 on the left and right boundary of Ω
and gN (t) = −1 on the top and bottom boundary of Ω. Let td be nd = 156 equispaced points
on the boundary ∂Ω. Let e ∼ N (0nd,1, σ

2
eInd) i.e. 1% additive white noise. The resolution

of the estimates in this chapter will be lower than the estimates typically found in EIT. This
is a consequence of EIT making multiple measurements in which different electrodes are used
as the “ground”. This leads to several current patterns u corresponding to the same internal
conductivity x. In this chapter, only a single current pattern is used.

This problem is modelled with finite element method (FEM). Modelling the Poisson equa-
tion with FEM is well understood, see for example [137, 138]. Development of FEM is often
attributed to the work of Hrennikoff [139], Courant [140] and Babuška [141, 142, 143]. A
more thorough discussion of FEM can be found in [144, 138]. Given that this thesis is more
concerned with the implementation of probabilistic algorithms for computing low rank approx-
imations than with FEM, the technical details of the FEM implementation are provided but not
elaborated on.

Figure 10.1: Fine mesh Figure 10.2: Coarse mesh
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In this chapter FEM is implemented with linear basis functions and the Ritz-Galerkin ap-
proximation. The FEM implementation leads to the expression

Kxu = F (10.19)

where u(j) ≈ u
(
t(j, :)

)
, u ∈ Rnx , t ∈ Rnx×2 are node locations, x(j) = x

(
t(j, :)

)
, x ∈ Rnx ,

Kx ∈ Rnx×nx is the stiffness matrix corresponding to a particular x and F ∈ Rnx is the load
or forcing vector. The data model is

d = Mu+ e = M(K−1
x F ) + e = A(x) + e (10.20)

where M ∈ Rnd×nx is the measurement operator. The stiffness matrix is typically not explic-
itly inverted, instead computing e.g. u = K \ F in MATLAB. The forward mapping

A(x) =


Ad(1)(x)

Ad(2)(x)
...

Ad(nd)(x)

 (10.21)

is nonlinear. Recall the Jacobian matrix

Jx ∈ Rnd×nx where Jx(j, k) =
∂Ad(j)(x)

∂x(k)
(10.22)

which can be used to construct the affine approximation

A(x+ ∆x) ≈ A(x) + Jx∆x (10.23)

where ∆x is some small perturbation. Section 6.6.2 outlined how to construct a low rank
sample approximation to the Jacobian. However, for this problem the Jacobian is known ana-
lytically and can be explicitly formed rapidly, so this chapter takes that approach instead.

This chapter will apply BAE to the estimation of xt. Let

d = ¯̄A(¯̄x) + e (10.24)

where ¯̄x ∈ Rn¯̄x be the “very fine” model, with n¯̄x = 1602 = 25, 600. This is only evaluated
once to simulate data and test the estimation scheme without committing an inverse crime. Let

d = Ā(x̄) + e (10.25)

where x̄ ∈ Rnx̄ be the “fine” model, with nx̄ = 802 = 6, 400. Let

d ≈ A(x) + e (10.26)
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Figure 10.3: Fine mesh ground truth x̄t Figure 10.4: Coarse mesh ground truth xt

Figure 10.5: Noiseless data/model prediction
ȳt = Ā(x̄t)

Figure 10.6: Model prediction difference
ȳt − yt = Ā(x̄)−A(x)

where x ∈ Rnx be the “coarse” model, with nx = 402 = 1, 600. For BAE, the models Ā and
A are used to generate m samples of ε at the offline stage. Only A and the Gaussian sample
approximation to ε are used at the online stage. Note that the only difference between the
models is how fine the discretisations are.

The FEM mesh used in the fine model is shown in Figure 10.1. The FEM mesh used in the
coarse model is shown in Figure 10.2. The measurement points td correspond to the boundary
nodes of the coarse mesh, and every second boundary node of the fine mesh.

The fine mesh ground truth x̄t is shown in Figure 10.3. The data in the simplified conduc-
tivity imaging problem considered in the chapter was found in [131] to carry little information
on x. This motivates the choice of xt, as smaller internal structures are unlikely to be recon-
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structed. The coarse mesh ground truth is shown in Figure 10.4. The fine model prediction
ȳt = Ā(x̄t) is shown in Figure 10.5. The difference between the fine and coarse model predic-
tion ȳt − yt = Ā(x̄)−A(x) is shown in Figure 10.6. Note the scales.

10.1 Nonlinear Inversion

This section considers estimating xt from data dt = A(xt) + et using nonlinear methods.
The model A is used both in simulating the data and estimating xt, so an inverse problem
is committed. The purpose of this section is to demonstrate the structure of the simplified
conductivity imaging problem. By stating the problem in terms of the coarse model A, the
estimation can be approached in a straightforward manner, without using the proposed methods
of Chapters 6 and 7. For example, nx = 1, 600 means that Γx only occupies around 20MB of
memory as a full matrix. We are using a 2010 laptop with 2.4 GHz dual core CPU, 4GB of
RAM and 250 GB hard drive, so the dimensionality of this problem provides relatively little
obstacle.

Let x ∼ N (µx,Γx) where Γx is constructed explicitly from a smoothness covariance func-
tion as described in Section 5.1.1. Given the size of the feature in the known ground truth
and the relatively low level of information in the data, a long correlation length is used. The
factor Lx such that LxLTx = Γx is computed as the Cholesky factor. The factor L̃x such that
L̃Tx L̃x = Γ−1

x is computed by back substitution from Lx. The MAP estimate

xMAP = min
x

{∥∥∥L̃e(dt −A(x))
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(10.27)

is computed with Gauss-Newton iterations. The Gauss-Newton algorithm is briefly reviewed
in Section 4.3.2, and further details can be found in numerical optimisation texts e.g. [68].
Once the MAP has been computed, the Laplace approximation to the posterior covariance

Γx|d ≈ Γ̂x|d = Γx − ΓxJ
T
MAP(Γe + JMAPΓxJ

T
MAP)−1JMAPΓx (10.28)

is constructed where JMAP is the Jacobian of A at xMAP. The diagonal σ̂2 of Γ̂x|d is then used
to construct posterior error intervals.

For this problem, the MAP estimate has converged after 12 Gauss-Newton iterations, com-
puting in 8.98 seconds on a 2010 laptop with 2.4 GHz dual core CPU, 4 GB of RAM and 250
GB hard drive. The posterior covariance is constructed in 2.21 seconds. This gives a total
online computation time of 11.2 seconds. A side view of xt is shown in Figure 10.7 and a top
down view in Figure 10.9. A side view of the estimate xMAP is shown in Figure 10.8 and a top
down view in Figure 10.10. The posterior uncertainty estimate σ̂ plotted on Ω as σ̂(j) at t(j, :)
is shown in Figure 10.11. Note that the uncertainty is lower near the boundary. The ground
truth, MAP estimate and 3σ̂ posterior error interval along t(2) = 0.5 i.e. the vertical centre
line is shown in Figure 10.12.
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Figure 10.7: Ground truth xt Figure 10.8: Map estimate xMAP

Figure 10.9: Ground truth xt Figure 10.10: Map estimate xMAP

Figure 10.11: Posterior diagonal σ̂ Figure 10.12: Map estimate, posterior error
interval and ground truth along t(2) = 0.5
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Note that the MAP estimate approaches the negative values of the ground truth, and then
adds a positive part. The posterior error intervals seem representative, containing most but not
all of the ground truth. While the estimate does not capture the sharp edges of the ground truth
feature, this is not surprising given a very smooth prior is used in the estimation. Experiments
with smoothness priors with different correlation lengths and heights did not produce particu-
larly better results, with the above estimates being a good balance of detecting features without
amplifying noise in this problem.

10.2 Inversion by Local Sample Approximation

In this section a local sample approximation is used to estimate xt. The fine model Ā is used
for computing samples, and the very fine model ¯̄A is used to simulate data used when analysing
the quality of estimates, avoiding an inverse crime. The approach being used is similar to that
described in Section 7.1. A discussion of linear sample approximations to nonlinear operators
can be found in Section 6.6.2.

Let x̄ ∼ N (µx̄,Γx̄) where Γx̄ = Lx̄L
T
x̄ and Lx̄ is a smoothing filter constructed as

x̄j = µx̄ + F−1

(
kf,x̄ �F(wj)

)
(10.29)

where kf,x̄ ∈ Rnx̄ is the Fourier transform of a Gaussian kernel. This allows the use of the
FFT algorithm when filtering, and only the filters e.g. kf,x̄ ∈ Rnx̄ need to be stored in memory.
This approach is outlined in Section 5.1.3 and applied in Chapters 8 and 9 with more detail. A
draw x̄j is shown side on in Figure 10.13 and top down in Figure 10.15. The Gaussian kernel
width and height were chosen so that draws were consistent with those of the prior in Section
10.1. The coarse scale sample xj = Px,x̄x̄j is shown side on in Figure 10.14 and top down in
Figure 10.16.

The filter is used to compute m samples x̄j , from which samples xj = Px,x̄x̄j and ȳj =
Ā(x̄) are computed. These samples are used to construct the QR factors Qx, Rx, Qȳ and Rȳ
as described in Section 6.4.1. These factors are then used to construct the sample conditional
mean as

µ̂x|d = µx + Γ̂xdΓ̂
−1
d (d− µ̂d) (10.30)

= µx +
1

m
QxRxR

T
ȳQ

T
ȳ (Γe +

1

m
QȳRȳR

T
ȳQ

T
ȳ )−1(d− µ̂ȳ) (10.31)

= µx +QxMxȳQ
T
ȳ (Γe +QȳMȳQ

T
ȳ )−1(d− µ̂ȳ) (10.32)

= µx +QxMxȳQ
T
ȳ

(
Γ−1
e − Γ−1

e Qȳ(M
−1
ȳ +QTȳ Γ−1

e Qȳ)
−1QTȳ

)
(d− µ̂ȳ) (10.33)

= µx +QxMxȳQ
T
ȳ

(
1

σ2
e

Ind −
1

σ4
e

Qȳ(M
−1
ȳ +

1

σ2
e

Irȳ)
−1QTȳ

)
(d− µ̂ȳ) (10.34)
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Figure 10.13: Sample x̄j of x̄ Figure 10.14: Sample xj = Px,x̄x̄j of x

Figure 10.15: Sample x̄j of x̄ Figure 10.16: Sample xj = Px,x̄x̄j of x

where we make use of the orthonormal columns of Qȳ, the matrix inversion lemma, and Γe =
σ2
eInd . Note that only the accurate model Ā is used in constructing this estimator, and that the

estimator does not estimate u. The validity of the sample conditional mean as an estimate of
xt depends on whether Ā is “effectively linear” in the “effective support” of πx̄(x̄). This is
discussed in more detail in Section 6.6.2.
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Figure 10.17: Ground truth xt
Figure 10.18: Sample conditional mean

estimate µ̂x|d=dt

Figure 10.19: Ground truth xt
Figure 10.20: Sample conditional mean

estimate µ̂x|d=dt

Figure 10.21: Posterior diagonal σ̂ Figure 10.22: Sample CM estimate, posterior
error interval and ground truth along

t(2) = 0.5
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The sample posterior covariance estimate can be expressed as

Γ̂x|d = Γ̂x − Γ̂xdΓ̂
−1
d Γ̂dx (10.35)

=
1

m
QxRxR

T
xQ

T
x −

1

m2
QxRxR

T
ȳQ

T
ȳ (Γe +

1

m
QȳRȳR

T
ȳQ

T
ȳ )−1QȳRȳR

T
xQ

T
x (10.36)

= QxMxQ
T
x −QxMxȳQ

T
ȳ (Γe +QȳMȳQ

T
ȳ )−1QȳM

T
xȳQ

T
x (10.37)

= QxMxQ
T
x −QxMxȳQ

T
ȳ

(
Γ−1
e − Γ−1

e Qȳ(M
−1
ȳ +QTȳ Γ−1

e Qȳ)
−1QTȳ

)
QȳM

T
xȳQ

T
x

(10.38)

= QxMxQ
T
x −QxMxȳQ

T
ȳ

(
1

σ2
e

Ind −
1

σ4
e

Qȳ(M
−1
ȳ +

1

σ2
e

Irȳ)
−1QTȳ

)
QȳM

T
xȳQ

T
x

(10.39)

= QxMxQ
T
x −QxMxȳ

(
1

σ2
e

Irȳ −
1

σ4
e

(M−1
ȳ +

1

σ2
e

Irȳ)
−1

)
MT
xȳQ

T
x (10.40)

= Qx

(
Mx −Mxȳ

(
1

σ2
e

Irȳ −
1

σ4
e

(M−1
ȳ +

1

σ2
e

Irȳ)
−1

)
MT
xȳ

)
QTx (10.41)

reusing results from the construction of µ̂x|d. Note that σ̂2 = diag(Γ̂x|d) can be constructed
element by element, without explicitly forming Γ̂x|d ∈ Rnx×nx in memory. The posterior error
interval is constructed as µ̂x|d ± 3σ̂ in this section.

The computational platform used is a 2010 laptop with 2.4 GHz dual core CPU, 4GB of
RAM and 250 GB hard drive. The offline stage of computing m = 200 samples, forming

µ̂x|d = µx +QxMxȳQ
T
ȳ

(
1

σ2
e

Ind −
1

σ4
e

Qȳ(M
−1
ȳ +

1

σ2
e

Irȳ)
−1QTȳ

)
(d− µ̂ȳ) (10.42)

and

σ̂2 = diag(Γ̂x|d) = diag

(
Qx

(
Mx −Mxȳ

( 1

σ2
e

Irȳ −
1

σ4
e

(M−1
ȳ +

1

σ2
e

Irȳ)
−1
)
MT
xȳ

)
QTx

)
(10.43)

took 10.8 seconds. The tolerance τ = R(1,1)
100 used in computing the QR factors resulted in

rȳ = 26 and rx = m = 200. This suggest that for x̄ in the “effective support” of πx̄, the
operator Ā is not only approximately linear but also effectively low rank. This could explain
why only large scale features in the ground truth can be resolved in estimates for this problem
[131].

The ground truth xt is shown side on in Figure 10.17 and top down in Figure 10.19. Data
was simulated as dt = ¯̄A(¯̄xt) + et where et is a draw of e ∼ N (0nd,1, σ

2
eInd). The estimate



208 CHAPTER 10. SIMPLIFIED CONDUCTIVITY IMAGING

µ̂x|d=dt is shown side on in Figure 10.18 and top down in Figure 10.20. This estimate appears
to be more representative of xt than the MAP found by nonlinear optimisation and inverse
crimes in Section 10.1. The posterior uncertainty estimate σ̂ plotted on Ω as σ̂(j) at t(j, :) is
shown in Figure 10.21. Note that the uncertainty is generally lower near the boundary. The
ground truth, CM estimate and 3σ̂ posterior error interval along t(2) = 0.5 i.e. the vertical
centre line is shown in Figure 10.22. The CM estimate and posterior error intervals appear
representative.

Computations were performed on a 2010 laptop with 2.4 GHz dual core CPU, 4 GB of
RAM and 250 GB hard drive. The estimation procedure of Section 10.1 required 8.98 seconds
to compute the MAP and an additional 2.21 seconds to compute the posterior covariance for a
total of 11.2 seconds of online computation. In this section, the posterior covariance is fixed
and computed at the offline stage. The offline stage computes in 10.8 seconds. The online
stage, computing the sample CM estimate and adding posterior error intervals, takes 0.0004
seconds.

10.3 Discussion

This chapter considered computing estimates for a simplified conductivity imaging problem.
While related to EIT, this problem was chosen to demonstrate the effectiveness of sample based
local approximations to a nonlinear inverse problem.

This problem is known to carry little information of the unknown of interest x [131], hence
the example ground truth was chosen to consist of a single large inclusion. The ground truth
at fine discretisation x̄t is shown in Figure 10.3. The ground truth at coarse discretisation is
shown in Figures 10.4, 10.7, 10.9, 10.17, and 10.19.

A long correlation length smoothness prior was found to be suitable for this problem. An
example draw x̄j of the fine discretisation unknown x̄ is shown in Figures 10.13 and 10.15. An
example draw at the coarse discretisation is shown in Figures 10.14 and 10.16. Note that the
features in the draw appear to be of similar scale to the inclusion in xt.

The MAP estimate xMAP found as the solution to the nonlinear optimisation problem

xMAP = min
x

{∥∥∥L̃e(dt −A(x))
∥∥∥2

2
+
∥∥∥L̃x(x− µx)

∥∥∥2

2

}
(10.44)

is shown in Figures 10.8 and 10.10. Experiments with altering the Gaussian smoothness prior
parameters were not found to notably improve the quality of the estimates. Note that in the
above, dt = A(xt) + et, so an inverse crime is committed in forming the above MAP estimate.
Online computation of the above MAP estimate on a 2010 laptop with 2.4 GHz dual core CPU,
4 GB of RAM and 250 GB hard drive with 12 Gauss-Newton iterations took 8.98 seconds. The
posterior covariance was approximated as

Γ̂x|d = Γx − ΓxJ
T
MAP(Γe + JMAPΓxJ

T
MAP)−1JMAPΓx (10.45)
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and σ̂2 = diag(Γ̂x|d) was used to construct posterior error intervals xMAP ± 3σ̂. The above
approximate posterior covariance takes 2.21 seconds to compute, giving a total online cputation
time of 11.2 seconds. The quantity σ̂ on Ω is shown in Figure 10.11, noting that posterior error
is lower near the boundary ∂Ω, where data is collected. The MAP estimate with posterior error
intervals down the centre line t(2) = 0.5 are shown in Figure 10.12.

Note that the MAP estimate produces a very smooth approximation to xt, and adds a pos-
itive inclusion around t(0.5, 0.7). The smoothness is unsurprising given that a very smooth
prior is used in constructing the estimate. The posterior error interval largely contains the
ground truth, however the sharp edges are poorly represented. Experiments with other Gaus-
sian smoothness priors did not particularly improve the quality of the estimates. Future work
may involve application of a TV prior to capture the sharp edges of xt.

A local sample approximation was also applied to this nonlinear estimation problem. The
model Ā is used for computing samples, and the model ¯̄A is used for simulating the data dt.
The sample conditional mean was formed as

µ̂x|d = µx +QxMxȳQ
T
ȳ

(
1

σ2
e

Ind −
1

σ4
e

Qȳ(M
−1
ȳ +

1

σ2
e

Irȳ)
−1QTȳ

)
(d− µ̂ȳ) (10.46)

and sample posterior error intervals computed from

σ̂2 = diag(Γ̂x|d) = diag

(
Qx

(
Mx −Mxȳ

( 1

σ2
e

Irȳ −
1

σ4
e

(M−1
ȳ +

1

σ2
e

Irȳ)
−1
)
MT
xȳ

)
QTx

)
(10.47)

as µ̂x|d ± 3σ̂. The offline stage of computing m = 200 samples and forming the above sample
entities took 10.8 seconds on a 2010 laptop with 2.4 GHz dual core CPU, 4GB of RAM and
250 GB. The forward operator Ā was found to be effectively low rank and linear for reasonable
values of πx̄(x̄). The sample conditional mean estimate µ̂x|d=dt is shown in Figures 10.18
and 10.20. The quantity σ̂ is plotted over Ω in Figure 10.21. Note that the width of posterior
error intervals are fixed in this approach, whereas σ̂ shown in Figure 10.11 corresponds to that
particular estimate xMAP given dt. Note that the general shape of the posterior error intervals
are the same, but the posterior error intervals in the local sample approximation approach are
narrower than the nonlinear posterior error interval for this dt.

The sample conditional mean estimate, posterior error interval and ground truth along the
vertical centre line t(2) = 0.5 is shown in Figure 10.22. The online stage of evaluation µ̂x|d=dt

and adding posterior error intervals takes 0.0004 seconds. Note that the total online and offline
computational stage of the local sample approximation inversion takes 10.8 seconds, relative to
the online stage taking 11.2 seconds for nonlinear inversion. Note that the sample CM estimate
does not have the additional positive inclusion seen in the nonlinear MAP. While this method
similarly fails to capture the sharp corners of the ground truth, the local sample estimates
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appear to be generally more representative than the nonlinear estimates and compute 28,000
times faster at the online stage.

Computing estimates based on local sample approximations performed well for the non-
linear problem of this chapter, with the local sample approximation estimates appearing more
representative of the ground truth and computing 28,000 times than estimates found by nonlin-
ear inversion methods. While the problem of this chapter is based on EIT, it is not a physically
meaningful problem. Future work might involve applying the methods outlined in this chapter
to a more realistic EIT model. The nonlinear estimates could possibly be improved by e.g.
implementing a TV type prior, albeit with an increase in computational cost. The analysis
of this chapter as intended just to demonstrate an application of inversions by local sample
approximation to a nonlinear problem, and this goal has been achieved.



Chapter 11

Conclusions

The computational costs involved in inverse problems may be prohibitive at the offline and/or
online stage. This thesis proposes various methods by which these computational costs can be
reduced. The recursive QR method proposed in this thesis allows reduced rank approximations
to the entities used in BAE to be constructed in parallel with samples being computed, reducing
computational cost and memory requirements at the offline and online stage.

Recursive QR was also applied to more general probabilistic algorithms for computing
approximate matrix decompositions. The concept of locally accurate probabilistic decompo-
sitions was also proposed, with the intent of allowing lower rank approximations to be found
with fewer computations. An extension to approximations of nonlinear operators was also
developed.

Recursive QR and local sample approximation were developed in this thesis in the context
of solving inverse problems, particularly with BAE. The concepts may prove sufficiently gen-
eral to be more broadly applied, for example using low rank recursive QR constructed local
sample approximations to forward operators to reduce the computational costs of simulating
physical systems.

A general approach to inverse problems incorporating the methods of this thesis was pro-
posed. This approach was applied to the linear problems of 2D deconvolution and 2D x-ray
CT. A nonlinear simplified conductivity imaging problem was also investigated. The methods
of this thesis were shown to reduce the computational cost while still providing satisfactory
estimates.

The recursive QR method as proposed in this thesis could be further refined in the future.
For example, the current Gram-Schmidt orthogonalisation could be replaced with a more stable
algorithm such as Householder reflections. The columns of Q could also be reorthogonalised
and products of the form RRT updated to more accurately approximate sample entities.

The methods of this thesis were applied to synthetic problems albeit related to real world
applications. The synthetic problems of this thesis were analysed fairly briefly and with some-
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what crude estimation schemes. For example, the MAP estimates in Chapters 8 and 9 were
computed with Landweber iteration. Future work could involve application of other iterative
solvers such as the generalised minimal residual method. While this was sufficient to demon-
strate the methodological improvements, more robust analysis of a wider variety of cases could
still prove informative. Further work could include applying the methods of this thesis to real
world problems. For example, extending the 2D x-ray CT problem considered in this thesis to
3D CT using clinical data. Another possible future avenue of research would be to apply the
local sample approximation approach of Chapter 10 to an actual EIT problem, rather than the
simplified conductivity imaging problem considered.

In conclusion, this thesis provides various methods by which computational costs can be
reduced, with a particular emphasis on probabilistic algorithms computing matrix decomposi-
tions from samples.
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